The complex permittivity of FeCl3/AOT/CCl4 microemulsions in the 1-105 Hz frequency range has been measured by the conventional AC complex impedance technique. Measurements as a function of the volume fraction of the dispersed phase (FeCl3 + AOT) and temperature at fixed salt-to-AOT molar ratio (R, R = 0.5) show that the entrapment of FeCl3 clusters significantly enhances the local permittivity of the AOT reverse micelles and the number density of charge carriers resulting from the peculiar state of the confined inorganic salt. An estimate of the apparent static permittivity of the FeCl3 ionic clusters entrapped in the core of AOT reverse micelles gives the very high and quite surprisingly value of about 237. Moreover, a thorough analysis of conductivity data and of their temperature dependence strongly supports the hypothesis that the charge transport in these systems is mainly sustained by a mechanism of hopping consisting in the continuous jumping of charged species within supra-micellar aggregates of AOT reverse micelles whose aggregation is driven by fluctuating opposite charges on contacting micelles.

Complex permittivity of FeCl3/AOT/CCl4 microemulsions probed by AC impedance spectroscopy

Calandra Pietro;
2009

Abstract

The complex permittivity of FeCl3/AOT/CCl4 microemulsions in the 1-105 Hz frequency range has been measured by the conventional AC complex impedance technique. Measurements as a function of the volume fraction of the dispersed phase (FeCl3 + AOT) and temperature at fixed salt-to-AOT molar ratio (R, R = 0.5) show that the entrapment of FeCl3 clusters significantly enhances the local permittivity of the AOT reverse micelles and the number density of charge carriers resulting from the peculiar state of the confined inorganic salt. An estimate of the apparent static permittivity of the FeCl3 ionic clusters entrapped in the core of AOT reverse micelles gives the very high and quite surprisingly value of about 237. Moreover, a thorough analysis of conductivity data and of their temperature dependence strongly supports the hypothesis that the charge transport in these systems is mainly sustained by a mechanism of hopping consisting in the continuous jumping of charged species within supra-micellar aggregates of AOT reverse micelles whose aggregation is driven by fluctuating opposite charges on contacting micelles.
2009
Istituto per i Processi Chimico-Fisici - IPCF
File in questo prodotto:
File Dimensione Formato  
prod_40089-doc_30115.pdf

non disponibili

Descrizione: articolo pubblicato
Dimensione 465.82 kB
Formato Adobe PDF
465.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/50699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact