We studied the excited state dynamics of two bis-amino substituted anthraquinone (AQ) derivatives, with absorption in the visible spectral region, which results from the attachment of a electron-donating group to the electron-deficient AQ chromophore. Femtosecond transient absorption spectra show that intersystem crossing (ISC) takes place in 190-320 ps, and nanosecond transient absorption spectra demonstrated an unusually short triplet state lifetime (2.06-5.43 μs) for the two AQ derivatives. Pulsed laser-excited time-resolved electron paramagnetic resonance (TREPR) spectra show an inversion of the electron spin polarization (ESP) phase pattern of the triplet state at a longer delay time after laser flash. Spectral simulations show faster decay of the Ty sublevel than the other two sublevels (τx = 15.0 μs, τy = 1.50 μs, τz = 15.0 μs); theoretical computation predicts initial overpopulation of the Ty sublevel, and rationalizes the short T1 state lifetime and the ESP inversion. Theoretical computations taking into account the electron-vibrational coupling, i.e., the Herzberg-Teller effect, successfully rationalize the TREPR experimental observations.

Electron Spin Dynamics of the Intersystem Crossing in Aminoanthraquinone Derivatives: The Spectral Telltale of Short Triplet Excited States

Di Donato, Mariangela
2024

Abstract

We studied the excited state dynamics of two bis-amino substituted anthraquinone (AQ) derivatives, with absorption in the visible spectral region, which results from the attachment of a electron-donating group to the electron-deficient AQ chromophore. Femtosecond transient absorption spectra show that intersystem crossing (ISC) takes place in 190-320 ps, and nanosecond transient absorption spectra demonstrated an unusually short triplet state lifetime (2.06-5.43 μs) for the two AQ derivatives. Pulsed laser-excited time-resolved electron paramagnetic resonance (TREPR) spectra show an inversion of the electron spin polarization (ESP) phase pattern of the triplet state at a longer delay time after laser flash. Spectral simulations show faster decay of the Ty sublevel than the other two sublevels (τx = 15.0 μs, τy = 1.50 μs, τz = 15.0 μs); theoretical computation predicts initial overpopulation of the Ty sublevel, and rationalizes the short T1 state lifetime and the ESP inversion. Theoretical computations taking into account the electron-vibrational coupling, i.e., the Herzberg-Teller effect, successfully rationalize the TREPR experimental observations.
2024
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Electron resonance; Electron spin resonance spectroscopy; Paramagnetic resonance; Spin dynamics; Transient absorption spectroscopy
File in questo prodotto:
File Dimensione Formato  
J. Phys. Chem. B 2024, 128, 41, 10189–10199.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.91 MB
Formato Adobe PDF
2.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/507081
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact