The analysis of hydrogen isotope content is crucial for understanding the operation of fusion devices. Hydrogen isotopic analysis in the core and plasma edge is conducted through neutron and spectroscopic diagnostics. In the case of exhaust gas, mass spectrometry is employed using residual gas analyzers (RGAs), along with optical gas analysis (OGA) utilizing an optical Penning gauge. The use of traditional quadrupole mass spectrometers for RGA encounters challenges during discharges with tritium gas due to signal overlap of different hydrogen molecules at the same mass number. This paper introduces a novel technique to address this issue through a cross-related analysis of RGA data with OGA results. Another consideration in mass spectrometry analysis is the instrument’s varying sensitivity concerning the gas mass number. The paper includes gas calibration data results for all the quadrupoles used in the JET gas analysis. Hydrogen isotopic ratios are calculated from RGA detected currents using simple formulas. The results of this procedure are presented for selected DT JET discharges in relation to the JET pulse time, and they are compared with corresponding optical data. Time-averaged hydrogen isotopic ratio values are computed for numerous discharges during the DT and T campaigns.

Hydrogen isotopic ratio by residual gas analysis during the JET DT campaigns

Gervasini G.
;
Laguardia L.;
2024

Abstract

The analysis of hydrogen isotope content is crucial for understanding the operation of fusion devices. Hydrogen isotopic analysis in the core and plasma edge is conducted through neutron and spectroscopic diagnostics. In the case of exhaust gas, mass spectrometry is employed using residual gas analyzers (RGAs), along with optical gas analysis (OGA) utilizing an optical Penning gauge. The use of traditional quadrupole mass spectrometers for RGA encounters challenges during discharges with tritium gas due to signal overlap of different hydrogen molecules at the same mass number. This paper introduces a novel technique to address this issue through a cross-related analysis of RGA data with OGA results. Another consideration in mass spectrometry analysis is the instrument’s varying sensitivity concerning the gas mass number. The paper includes gas calibration data results for all the quadrupoles used in the JET gas analysis. Hydrogen isotopic ratios are calculated from RGA detected currents using simple formulas. The results of this procedure are presented for selected DT JET discharges in relation to the JET pulse time, and they are compared with corresponding optical data. Time-averaged hydrogen isotopic ratio values are computed for numerous discharges during the DT and T campaigns.
2024
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
plasma exhaust,
hydrogen isotopic ratio
residual gas analysis
optical gas analysis
File in questo prodotto:
File Dimensione Formato  
Gervasini_2024_Nucl._Fusion_64_126003.pdf

solo utenti autorizzati

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/507221
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact