Digital Twin system plays a crucial role in several contexts, from smart agriculture to predictive maintenance, from healthcare to weather modelling. To be effective, it involves a continuous exchange of massive data between IoT sensors on real world and digital system hosted on HPC and vice versa. Nevertheless, the transmitted signals often exhibit high similarity, resulting in a redundant dataset very suitable for compression. This paper shows how Dictionary Learning can be used as a preprocessing technique for AI algorithms due to its ability to compress large data volumes up to 80% with a potential enhancement of the performances acting both as a denoising and compression technique. This algorithm operates efficiently on various types of datasets, from images to timeseries, and is well-suited for deployment on devices with limited computational resources, like IoT sensors.

Dictionary Learning for data compression within a Digital Twin Framework

Porcelli M.;
2024

Abstract

Digital Twin system plays a crucial role in several contexts, from smart agriculture to predictive maintenance, from healthcare to weather modelling. To be effective, it involves a continuous exchange of massive data between IoT sensors on real world and digital system hosted on HPC and vice versa. Nevertheless, the transmitted signals often exhibit high similarity, resulting in a redundant dataset very suitable for compression. This paper shows how Dictionary Learning can be used as a preprocessing technique for AI algorithms due to its ability to compress large data volumes up to 80% with a potential enhancement of the performances acting both as a denoising and compression technique. This algorithm operates efficiently on various types of datasets, from images to timeseries, and is well-suited for deployment on devices with limited computational resources, like IoT sensors.
2024
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Anomaly detection
Dictionary Learning
Digital Twin
Image recognition
Images compression
Parallel OMP
Timeseries compression
File in questo prodotto:
File Dimensione Formato  
490.pdf

accesso aperto

Descrizione: Dictionary Learning for data compression within a Digital Twin Framework
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/507302
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact