We present a combined quantum mechanics and molecular mechanics (QM/MM) method to study electronic energy transfer (EET) in condensed phases. The method introduces a quantum mechanically based linear response (LR) scheme to describe both chromophore electronic excitations and electronic couplings, while the environment is described through a classical polarizable force field. Explicit treatment of the solvent electronic polarization is a key aspect of the model, as this allows account of solvent screening effects in the coupling. The method is tested on a model perylene diimide (PDI) dimer in water solution. We find an excellent agreement between the QM/MM method and “exact” supermolecule calculations in which the complete solute-solvent system is described at the QM level. In addition, the estimation of the electronic coupling is shown to be very sensitive to the quality of the parameters used to describe solvent polarization. Finally, we compare ensemble-averaged QM/MM results to the predictions of the PCM-LR method, which is based on a continuum dielectric description of the solvent. We find that both continuum and atomistic solvent models behave similarly in homogeneous media such as water. Our findings demonstrate the potential of the method to investigate the role of complex heterogeneous environments, e.g. proteins or nanostructured host materials, on EET.

Electronic Energy Transfer in Condensed Phase Studied by a Polarizable QM/MM Model

Susanna Monti;
2009

Abstract

We present a combined quantum mechanics and molecular mechanics (QM/MM) method to study electronic energy transfer (EET) in condensed phases. The method introduces a quantum mechanically based linear response (LR) scheme to describe both chromophore electronic excitations and electronic couplings, while the environment is described through a classical polarizable force field. Explicit treatment of the solvent electronic polarization is a key aspect of the model, as this allows account of solvent screening effects in the coupling. The method is tested on a model perylene diimide (PDI) dimer in water solution. We find an excellent agreement between the QM/MM method and “exact” supermolecule calculations in which the complete solute-solvent system is described at the QM level. In addition, the estimation of the electronic coupling is shown to be very sensitive to the quality of the parameters used to describe solvent polarization. Finally, we compare ensemble-averaged QM/MM results to the predictions of the PCM-LR method, which is based on a continuum dielectric description of the solvent. We find that both continuum and atomistic solvent models behave similarly in homogeneous media such as water. Our findings demonstrate the potential of the method to investigate the role of complex heterogeneous environments, e.g. proteins or nanostructured host materials, on EET.
2009
Istituto per i Processi Chimico-Fisici - IPCF
Electronic Energy Transfer
QM/MM
molecular dynamics
polarization
pcm
File in questo prodotto:
File Dimensione Formato  
prod_40132-doc_36679.pdf

solo utenti autorizzati

Descrizione: Electronic Energy Transfer in Condensed Phase Studied by a Polarizable QM/MM Model
Dimensione 242.9 kB
Formato Adobe PDF
242.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/50732
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 276
  • ???jsp.display-item.citation.isi??? 270
social impact