A reliable identification of the fault responsible for the magnitude 6.8 Al Haouz earthquake that struck Morocco on 8 September 2023 has so far been hampered by a lack of accurate tectonic analyses. Here we provide the first updated tectonic framework of the earthquake epicentral area based on original field data. We cast our results into the context of available geomorphological, thermochronological and geophysical constraints, and discuss the earthquake characteristics within the framework of competing tectonic models either based on astheno spheric upwelling or transpressional tectonics. We found that the Al Haouz earthquake was likely generated by rupture along a north-dipping high-angle fault, linking former fault planes belonging to an orogen-scale WSW- ESE transpressional shear zone. The geological evolution and seismotectonic structure of the region are largely governed by the oblique convergence of tectonic plates. The impact of asthenospheric upwelling, if any, remains limited and may only influence the geomorphological evolution of the Western High Atlas, but cannot explain the seismotectonic and geological features observed today at the surface, which are instead effects of trans pressional tectonics.

Tectonics of the Mw 6.8 Al Haouz earthquake (Morocco) reveals minor role of asthenospheric upwelling

Ellero, Alessandro
Writing – Original Draft Preparation
;
Ottria, Giuseppe
Writing – Original Draft Preparation
2024

Abstract

A reliable identification of the fault responsible for the magnitude 6.8 Al Haouz earthquake that struck Morocco on 8 September 2023 has so far been hampered by a lack of accurate tectonic analyses. Here we provide the first updated tectonic framework of the earthquake epicentral area based on original field data. We cast our results into the context of available geomorphological, thermochronological and geophysical constraints, and discuss the earthquake characteristics within the framework of competing tectonic models either based on astheno spheric upwelling or transpressional tectonics. We found that the Al Haouz earthquake was likely generated by rupture along a north-dipping high-angle fault, linking former fault planes belonging to an orogen-scale WSW- ESE transpressional shear zone. The geological evolution and seismotectonic structure of the region are largely governed by the oblique convergence of tectonic plates. The impact of asthenospheric upwelling, if any, remains limited and may only influence the geomorphological evolution of the Western High Atlas, but cannot explain the seismotectonic and geological features observed today at the surface, which are instead effects of trans pressional tectonics.
2024
Istituto di Geoscienze e Georisorse - IGG - Sede Pisa
Al Haouz earthquake, Seismotectonics, Asthenospheric upwelling, Transpression, Moroccan High Atlas
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/507881
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact