Optical resonators are fundamental building blocks of photonic systems, enabling meta-surfaces, sensors, and transmission filters to be developed for a range of applications. Sub-wavelength size (< λ/10) resonators, including planar split-ring resonators, are at the forefront of research owing to their potential for light manipulation, sensing applications and for exploring fundamental light-matter coupling phenomena. Near-field microscopy has emerged as a valuable tool for mode imaging in sub-wavelength size terahertz (THz) frequency resonators, essential for emerging THz devices (e.g. negative index materials, magnetic mirrors, filters) and enhanced light-matter interaction phenomena. Here, we probe coherently the localized field supported by circular split ring resonators with single layer graphene (SLG) embedded in the resonator gap, by means of scattering-type scanning near-field optical microscopy (s-SNOM), using either a single-mode or a frequency comb THz quantum cascade laser (QCL), in a detectorless configuration, via self-mixing interferometry. We demonstrate deep sub-wavelength mapping of the field distribution associated with in-plane resonator modes resolving both amplitude and phase of the supported modes, and unveiling resonant electric field enhancement in SLG, key for high harmonic generation.

Terahertz near-field microscopy of metallic circular split ring resonators with graphene in the gap

Schiattarella, Chiara
Data Curation
;
Di Gaspare, Alessandra
Methodology
;
Viti, Leonardo
Methodology
;
Vitiello, Miriam S.
Supervision
2024

Abstract

Optical resonators are fundamental building blocks of photonic systems, enabling meta-surfaces, sensors, and transmission filters to be developed for a range of applications. Sub-wavelength size (< λ/10) resonators, including planar split-ring resonators, are at the forefront of research owing to their potential for light manipulation, sensing applications and for exploring fundamental light-matter coupling phenomena. Near-field microscopy has emerged as a valuable tool for mode imaging in sub-wavelength size terahertz (THz) frequency resonators, essential for emerging THz devices (e.g. negative index materials, magnetic mirrors, filters) and enhanced light-matter interaction phenomena. Here, we probe coherently the localized field supported by circular split ring resonators with single layer graphene (SLG) embedded in the resonator gap, by means of scattering-type scanning near-field optical microscopy (s-SNOM), using either a single-mode or a frequency comb THz quantum cascade laser (QCL), in a detectorless configuration, via self-mixing interferometry. We demonstrate deep sub-wavelength mapping of the field distribution associated with in-plane resonator modes resolving both amplitude and phase of the supported modes, and unveiling resonant electric field enhancement in SLG, key for high harmonic generation.
2024
Istituto Nanoscienze - NANO
Terahertz, Resonators, Near-field-microscopy
File in questo prodotto:
File Dimensione Formato  
s41598-024-62787-5.pdf

accesso aperto

Descrizione: Terahertz near-field microscopy of metallic circular split ring resonators with graphene in the gap
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.87 MB
Formato Adobe PDF
1.87 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/508324
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact