The predicted increase in demand for minor metals for modern technologies raises major concerns regarding potential environmental concentration increases. Among the minor metals, lithium (Li) is particularly noteworthy due to growing demand for battery production. Concerns have been raised about the impact on biota of increasing Li concentrations in the environment. To expand the knowledge of the effects of Li on plants, garden cress (Lepidium sativum L.), a model plant for ecotoxicity assay, was tested in a 72 h test in Petri plates. The results showed a stimulation effect of Li at the lowest concentration (Li chloride 10 mg L−1) on seed germination and primary root elongation. Conversely, higher Li concentrations (50 and 150 mg L−1) caused a progressive impairment in both parameters. A genotoxic effect of Li on root cells, evaluated through the alkaline comet assay, was observed at each concentration tested, particularly at 150 mg L−1 Li chloride. Elemental analysis showed that Li accumulated in the seedlings in a dose–concentration relationship, confirming its ability to be readily absorbed and accumulated in plants. Given the likely increase in Li levels in the environment, further research is required to clarify the toxicity mechanisms induced by Li on growth and nucleic acids.
Lithium Toxicity in Lepidium sativum L. Seedlings: Exploring Li Accumulation’s Impact on Germination, Root Growth, and DNA Integrity
Marzi, Davide;Passatore, Laura;Pietrini, Fabrizio;Massimi, Lorenzo;Zacchini, Massimo
2024
Abstract
The predicted increase in demand for minor metals for modern technologies raises major concerns regarding potential environmental concentration increases. Among the minor metals, lithium (Li) is particularly noteworthy due to growing demand for battery production. Concerns have been raised about the impact on biota of increasing Li concentrations in the environment. To expand the knowledge of the effects of Li on plants, garden cress (Lepidium sativum L.), a model plant for ecotoxicity assay, was tested in a 72 h test in Petri plates. The results showed a stimulation effect of Li at the lowest concentration (Li chloride 10 mg L−1) on seed germination and primary root elongation. Conversely, higher Li concentrations (50 and 150 mg L−1) caused a progressive impairment in both parameters. A genotoxic effect of Li on root cells, evaluated through the alkaline comet assay, was observed at each concentration tested, particularly at 150 mg L−1 Li chloride. Elemental analysis showed that Li accumulated in the seedlings in a dose–concentration relationship, confirming its ability to be readily absorbed and accumulated in plants. Given the likely increase in Li levels in the environment, further research is required to clarify the toxicity mechanisms induced by Li on growth and nucleic acids.File | Dimensione | Formato | |
---|---|---|---|
Iannilli et al., 2024.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
2.22 MB
Formato
Adobe PDF
|
2.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.