Environmental DNA (eDNA) metabarcoding is transforming biodiversity monitoring in aquatic environments. Such an approach has been developed and deployed for monitoring lake fish communities in Great Britain, where the method has repeatedly shown a comparable or better performance than conventional approaches. Previous analyses indicated that 20 water samples per lake are sufficient to reliably estimate fish species richness, but it is unclear how reduced eDNA sampling effort affects richness, or other biodiversity estimates and metrics. As the number of samples strongly influences the cost of monitoring programmes, it is essential that sampling effort is optimised for a specific monitoring objective. The aim of this project was to explore the effect of reduced eDNA sampling effort on biodiversity metrics (namely species richness and community composition) using algorithmic and statistical resampling techniques of a data set from 101 lakes, covering a wide spectrum of lake types and ecological quality. The results showed that reliable estimation of lake fish species richness could, in fact, usually be achieved with a much lower number of samples. For example, in almost 90% of lakes, 95% of complete fish richness could be detected with only 10 water samples, regardless of lake area. Similarly, other measures of alpha and beta-diversity were not greatly affected by a reduction in sample size from 20 to 10 samples. We also found that there is no significant difference in detected species richness between shoreline and offshore sampling transects, allowing for simplified field logistics. This could potentially allow the effective sampling of a larger number of lakes within a given monitoring budget. However, rare species were more often missed with fewer samples, with potential implications for monitoring of invasive or endangered species. These results should inform the design of eDNA sampling strategies, so that these can be optimised to achieve specific monitoring goals.

Optimising species detection probability and sampling effort in lake fish eDNA surveys

Di Muri, Cristina;
2024

Abstract

Environmental DNA (eDNA) metabarcoding is transforming biodiversity monitoring in aquatic environments. Such an approach has been developed and deployed for monitoring lake fish communities in Great Britain, where the method has repeatedly shown a comparable or better performance than conventional approaches. Previous analyses indicated that 20 water samples per lake are sufficient to reliably estimate fish species richness, but it is unclear how reduced eDNA sampling effort affects richness, or other biodiversity estimates and metrics. As the number of samples strongly influences the cost of monitoring programmes, it is essential that sampling effort is optimised for a specific monitoring objective. The aim of this project was to explore the effect of reduced eDNA sampling effort on biodiversity metrics (namely species richness and community composition) using algorithmic and statistical resampling techniques of a data set from 101 lakes, covering a wide spectrum of lake types and ecological quality. The results showed that reliable estimation of lake fish species richness could, in fact, usually be achieved with a much lower number of samples. For example, in almost 90% of lakes, 95% of complete fish richness could be detected with only 10 water samples, regardless of lake area. Similarly, other measures of alpha and beta-diversity were not greatly affected by a reduction in sample size from 20 to 10 samples. We also found that there is no significant difference in detected species richness between shoreline and offshore sampling transects, allowing for simplified field logistics. This could potentially allow the effective sampling of a larger number of lakes within a given monitoring budget. However, rare species were more often missed with fewer samples, with potential implications for monitoring of invasive or endangered species. These results should inform the design of eDNA sampling strategies, so that these can be optimised to achieve specific monitoring goals.
2024
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
eDNA metabarcoding, meta-analysis, sampling effort, species detection
File in questo prodotto:
File Dimensione Formato  
MBMG_article_104655_en_1.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.91 MB
Formato Adobe PDF
3.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/509405
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact