A new thermodynamic uncertainty relation (TUR) is derived for systems described by linearly coupled Langevin equations in the presence of non-linear frictional forces. In our scheme, the main variable represents the velocity of a particle, while the other coupled variables describe memory effects which may arise from strongly correlated degrees of freedom with several time-scales and, in general, are associated with thermal baths at different temperatures. The new TUR gives a lower bound for the mean-squared displacement of the position of the particle, including its asymptotic diffusion coefficient. This bound, in several examples worked out here, appears to be a good analytical estimate of the real diffusion coefficient. The new TUR can be also applied in the absence of any external force (with or without thermal equilibrium between the baths), a case which usually goes beyond the scope of original TURs. We show applications to non-linear frictional models with memory, such as the Coulomb and the Prandtl-Tomlinson models, usually representative of friction at the nano-scale and within atomic-force microscopy experiments.

Thermodynamic uncertainty relations in the presence of non-linear friction and memory

Plati, A;Puglisi, A;Sarracino, A
2024

Abstract

A new thermodynamic uncertainty relation (TUR) is derived for systems described by linearly coupled Langevin equations in the presence of non-linear frictional forces. In our scheme, the main variable represents the velocity of a particle, while the other coupled variables describe memory effects which may arise from strongly correlated degrees of freedom with several time-scales and, in general, are associated with thermal baths at different temperatures. The new TUR gives a lower bound for the mean-squared displacement of the position of the particle, including its asymptotic diffusion coefficient. This bound, in several examples worked out here, appears to be a good analytical estimate of the real diffusion coefficient. The new TUR can be also applied in the absence of any external force (with or without thermal equilibrium between the baths), a case which usually goes beyond the scope of original TURs. We show applications to non-linear frictional models with memory, such as the Coulomb and the Prandtl-Tomlinson models, usually representative of friction at the nano-scale and within atomic-force microscopy experiments.
2024
Istituto dei Sistemi Complessi - ISC
Thermodynamic uncertainty relation
File in questo prodotto:
File Dimensione Formato  
Plati_2024_J._Phys._A__Math._Theor._57_155001.pdf

accesso aperto

Descrizione: Thermodynamic uncertainty relations in the presence of non-linear friction and memory
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/509625
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact