Silicon surface alloys and silicide nanolayers are highly important as contact materials in integrated circuit devices. Here we demonstrate that the submonolayer Si/Ag(001) surface reconstruction, reported to exhibit interesting topological properties, comprises a quasi-one-dimensional Si-Ag surface alloy based on chains of planar double-pentagon Si moieties. This geometry is determined using a combination of density functional theory calculations, scanning tunnelling microscopy, and grazing incidence x-ray diffraction simulations, and yields an electronic structure in excellent agreement with photoemission measurements. This work provides further evidence of pentagonal geometries in 2D materials and heterostructures and elucidates the importance of surface alloying in stabilizing their formation.

Double-pentagon silicon chains in a quasi-1D Si/Ag(001) surface alloy

Hogan, Conor
Primo
;
Colonna, Stefano;Flammini, Roberto;Ronci, Fabio
Ultimo
2024

Abstract

Silicon surface alloys and silicide nanolayers are highly important as contact materials in integrated circuit devices. Here we demonstrate that the submonolayer Si/Ag(001) surface reconstruction, reported to exhibit interesting topological properties, comprises a quasi-one-dimensional Si-Ag surface alloy based on chains of planar double-pentagon Si moieties. This geometry is determined using a combination of density functional theory calculations, scanning tunnelling microscopy, and grazing incidence x-ray diffraction simulations, and yields an electronic structure in excellent agreement with photoemission measurements. This work provides further evidence of pentagonal geometries in 2D materials and heterostructures and elucidates the importance of surface alloying in stabilizing their formation.
2024
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
STM, SXRD, DFT, surface alloy, pentagon, silicon, silver
File in questo prodotto:
File Dimensione Formato  
Hogan_et_al-2024-Nature_Communications.pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.93 MB
Formato Adobe PDF
2.93 MB Adobe PDF Visualizza/Apri
hogan_natcomm_y2024_SI_small.pdf

accesso aperto

Descrizione: Supplemental Information
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 7.95 MB
Formato Adobe PDF
7.95 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/509647
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact