The denoising diffusion model has received increasing attention in the field of image generation in recent years, thanks to its powerful generation capability. However, diffusion models should be deeply investigated in the field of multi-source image fusion, such as remote sensing pansharpening and multispectral and hyperspectral image fusion (MHIF). In this paper, we introduce a novel supervised diffusion model with two conditional modulation modules, specifically designed for the task of multi-source image fusion. These modules mainly consist of a coarse-grained style modulation (CSM) and a fine-grained wavelet modulation (FWM), which aim to disentangle coarse-grained style information and fine-grained frequency information, respectively, thereby generating competitive fused images. Moreover, some essential strategies for the training of the given diffusion model are well discussed, e.g., the selection of training objectives. The superiority of the proposed method is verified compared with recent state-of-the-art (SOTA) techniques by extensive experiments on two multi-source image fusion benchmarks, i.e., pansharpening and MHIF. In addition, sufficient discussions and ablation studies in the experiments are involved to demonstrate the effectiveness of our approach. The code is accessible at https://github.com/294coder/Dif-PAN for reproducibility purposes.
Diffusion model with disentangled modulations for sharpening multispectral and hyperspectral images
Vivone, GemineUltimo
2024
Abstract
The denoising diffusion model has received increasing attention in the field of image generation in recent years, thanks to its powerful generation capability. However, diffusion models should be deeply investigated in the field of multi-source image fusion, such as remote sensing pansharpening and multispectral and hyperspectral image fusion (MHIF). In this paper, we introduce a novel supervised diffusion model with two conditional modulation modules, specifically designed for the task of multi-source image fusion. These modules mainly consist of a coarse-grained style modulation (CSM) and a fine-grained wavelet modulation (FWM), which aim to disentangle coarse-grained style information and fine-grained frequency information, respectively, thereby generating competitive fused images. Moreover, some essential strategies for the training of the given diffusion model are well discussed, e.g., the selection of training objectives. The superiority of the proposed method is verified compared with recent state-of-the-art (SOTA) techniques by extensive experiments on two multi-source image fusion benchmarks, i.e., pansharpening and MHIF. In addition, sufficient discussions and ablation studies in the experiments are involved to demonstrate the effectiveness of our approach. The code is accessible at https://github.com/294coder/Dif-PAN for reproducibility purposes.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1566253523004748-main.pdf
solo utenti autorizzati
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
7.1 MB
Formato
Adobe PDF
|
7.1 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.