Several deep learning and transformer models have been recommended in previous research to deal with the classification of hyperspectral images (HSIs). Among them, one of the most innovative is the bidirectional encoder representation from transformers (BERT), which applies a distance-independent approach to capture the global dependency among all pixels in a selected region. However, this model does not consider the local spatial-spectral and spectral sequential relations. In this paper, a dual-dimensional (i.e., spatial and spectral) BERT (the so-called D2BERT) is proposed, which improves the existing BERT model by capturing more global and local dependencies between sequential spectral bands regardless of distance. In the proposed model, two BERT branches work in parallel to investigate relations among pixels and spectral bands, respectively. In addition, the layer intermediate information is used for supervision during the training phase to enhance the performance. We used two widely employed datasets for our experimental analysis. The proposed D2BERT shows superior classification accuracy and computational efficiency with respect to some state-of-the-art neural networks and the previously developed BERT model for this task.

Spatial-Spectral BERT for Hyperspectral Image Classification

Vivone, Gemine;
2024

Abstract

Several deep learning and transformer models have been recommended in previous research to deal with the classification of hyperspectral images (HSIs). Among them, one of the most innovative is the bidirectional encoder representation from transformers (BERT), which applies a distance-independent approach to capture the global dependency among all pixels in a selected region. However, this model does not consider the local spatial-spectral and spectral sequential relations. In this paper, a dual-dimensional (i.e., spatial and spectral) BERT (the so-called D2BERT) is proposed, which improves the existing BERT model by capturing more global and local dependencies between sequential spectral bands regardless of distance. In the proposed model, two BERT branches work in parallel to investigate relations among pixels and spectral bands, respectively. In addition, the layer intermediate information is used for supervision during the training phase to enhance the performance. We used two widely employed datasets for our experimental analysis. The proposed D2BERT shows superior classification accuracy and computational efficiency with respect to some state-of-the-art neural networks and the previously developed BERT model for this task.
2024
Istituto di Metodologie per l'Analisi Ambientale - IMAA
BERT
Multi-head self-attention
Spatial-spectral features
Convolutional neural network
Hyperspectral imaging
Classification
Deep learning
Remote sensing
File in questo prodotto:
File Dimensione Formato  
remotesensing-16-00539.pdf

accesso aperto

Licenza: Creative commons
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/509701
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact