We propose an artificial intelligence approach based on deep neural networks to tackle a canonical 2D scalar inverse source problem. The learned singular value decomposition (L-SVD) based on hybrid autoencoding is considered. We compare the reconstruction performance of L-SVD to the Truncated SVD (TSVD) regularized inversion, which is a canonical regularization scheme, to solve an ill-posed linear inverse problem. Numerical tests referring to far-field acquisitions show that L-SVD provides, with proper training on a well-organized dataset, superior performance in terms of reconstruction errors as compared to TSVD, allowing for the retrieval of faster spatial variations of the source. Indeed, L-SVD accommodates a priori information on the set of relevant unknown current distributions. Different from TSVD, which performs linear processing on a linear problem, L-SVD operates non-linearly on the data. A numerical analysis also underlines how the performance of the L-SVD degrades when the unknown source does not match the training dataset.

A Learned-SVD Approach to the Electromagnetic Inverse Source Problem

Catapano I.;Curcio C.;Esposito G.;Gennarelli G.;Ludeno G.;Soldovieri F.
2024

Abstract

We propose an artificial intelligence approach based on deep neural networks to tackle a canonical 2D scalar inverse source problem. The learned singular value decomposition (L-SVD) based on hybrid autoencoding is considered. We compare the reconstruction performance of L-SVD to the Truncated SVD (TSVD) regularized inversion, which is a canonical regularization scheme, to solve an ill-posed linear inverse problem. Numerical tests referring to far-field acquisitions show that L-SVD provides, with proper training on a well-organized dataset, superior performance in terms of reconstruction errors as compared to TSVD, allowing for the retrieval of faster spatial variations of the source. Indeed, L-SVD accommodates a priori information on the set of relevant unknown current distributions. Different from TSVD, which performs linear processing on a linear problem, L-SVD operates non-linearly on the data. A numerical analysis also underlines how the performance of the L-SVD degrades when the unknown source does not match the training dataset.
2024
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
autoencoder
deep neural networks
inverse source
singular value decomposition
learned singular value decomposition
File in questo prodotto:
File Dimensione Formato  
sensors-24-04496.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6 MB
Formato Adobe PDF
6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/509722
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact