We propose an artificial intelligence approach based on deep neural networks to tackle a canonical 2D scalar inverse source problem. The learned singular value decomposition (L-SVD) based on hybrid autoencoding is considered. We compare the reconstruction performance of L-SVD to the Truncated SVD (TSVD) regularized inversion, which is a canonical regularization scheme, to solve an ill-posed linear inverse problem. Numerical tests referring to far-field acquisitions show that L-SVD provides, with proper training on a well-organized dataset, superior performance in terms of reconstruction errors as compared to TSVD, allowing for the retrieval of faster spatial variations of the source. Indeed, L-SVD accommodates a priori information on the set of relevant unknown current distributions. Different from TSVD, which performs linear processing on a linear problem, L-SVD operates non-linearly on the data. A numerical analysis also underlines how the performance of the L-SVD degrades when the unknown source does not match the training dataset.
A Learned-SVD Approach to the Electromagnetic Inverse Source Problem
Catapano I.;Curcio C.;Esposito G.;Gennarelli G.;Ludeno G.;Soldovieri F.
2024
Abstract
We propose an artificial intelligence approach based on deep neural networks to tackle a canonical 2D scalar inverse source problem. The learned singular value decomposition (L-SVD) based on hybrid autoencoding is considered. We compare the reconstruction performance of L-SVD to the Truncated SVD (TSVD) regularized inversion, which is a canonical regularization scheme, to solve an ill-posed linear inverse problem. Numerical tests referring to far-field acquisitions show that L-SVD provides, with proper training on a well-organized dataset, superior performance in terms of reconstruction errors as compared to TSVD, allowing for the retrieval of faster spatial variations of the source. Indeed, L-SVD accommodates a priori information on the set of relevant unknown current distributions. Different from TSVD, which performs linear processing on a linear problem, L-SVD operates non-linearly on the data. A numerical analysis also underlines how the performance of the L-SVD degrades when the unknown source does not match the training dataset.File | Dimensione | Formato | |
---|---|---|---|
sensors-24-04496.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
6 MB
Formato
Adobe PDF
|
6 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.