Existing image fusion methods primarily focus on solving single-task fusion problems, overlooking the potential information complementarity among multiple fusion tasks. Additionally, there has been no prior research in the field of image fusion that explores the mixed training of labeled and unlabeled data for different fusion tasks. To address these gaps, this paper introduces a novel multi-task semi-supervised learning approach to construct a general image fusion framework. This framework not only facilitates collaborative training for multiple fusion tasks, thereby achieving effective information complementarity among datasets from different fusion tasks, but also promotes the (unsupervised) learning of unlabeled data via the (supervised) learning of labeled data. Regarding the specific network module, we propose a so-called pseudo-siamese Laplacian pyramid transformer (PSLPT), which can effectively distinguish information at different frequencies in source images and discriminatively fuse features from distinct frequencies. More specifically, we take datasets of four typical image fusion tasks into the same PSLPT for weight updates, yielding the final general fusion model. Extensive experiments demonstrate that the obtained general fusion model exhibits promising outcomes for all four image fusion tasks, both visually and quantitatively. Moreover, comprehensive ablation and discussion experiments corroborate the effectiveness of the proposed method. The code is available at https://github.com/wwhappylife/A-general-image-fusion-framework-using-multi-task-semi-supervised-learning.

A general image fusion framework using multi-task semi-supervised learning

Vivone, Gemine
Ultimo
2024

Abstract

Existing image fusion methods primarily focus on solving single-task fusion problems, overlooking the potential information complementarity among multiple fusion tasks. Additionally, there has been no prior research in the field of image fusion that explores the mixed training of labeled and unlabeled data for different fusion tasks. To address these gaps, this paper introduces a novel multi-task semi-supervised learning approach to construct a general image fusion framework. This framework not only facilitates collaborative training for multiple fusion tasks, thereby achieving effective information complementarity among datasets from different fusion tasks, but also promotes the (unsupervised) learning of unlabeled data via the (supervised) learning of labeled data. Regarding the specific network module, we propose a so-called pseudo-siamese Laplacian pyramid transformer (PSLPT), which can effectively distinguish information at different frequencies in source images and discriminatively fuse features from distinct frequencies. More specifically, we take datasets of four typical image fusion tasks into the same PSLPT for weight updates, yielding the final general fusion model. Extensive experiments demonstrate that the obtained general fusion model exhibits promising outcomes for all four image fusion tasks, both visually and quantitatively. Moreover, comprehensive ablation and discussion experiments corroborate the effectiveness of the proposed method. The code is available at https://github.com/wwhappylife/A-general-image-fusion-framework-using-multi-task-semi-supervised-learning.
2024
Istituto di Metodologie per l'Analisi Ambientale - IMAA
Image fusion
Multi-task
Laplacian pyramid
Fusion rule
Remote sensing
Medical images
Semi-supervised learning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/509763
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact