Numerous studies are focused on nanoparticle penetration into the brain functionalizing them with ligands useful to cross the blood–brain barrier. However, cell targeting is also crucial, given that cerebral pathologies frequently affect specific brain cells or areas. Functionalize nanoparticles with the most appropriate targeting elements, tailor their physical parameters, and consider the brain's complex anatomy are essential aspects for precise therapy and diagnosis. In this review, we addressed the state of the art on targeted nanoparticles for drug delivery in diseased brain regions, outlining progress, limitations, and ongoing challenges. We also provide a summary and overview of general design principles that can be applied to nanotherapies, considering the areas and cell types affected by the most common brain disorders. We then emphasize lingering uncertainties that hinder the translational possibilities of nanotherapies for clinical use. Finally, we offer suggestions for continuing preclinical investigations to enhance the overall effectiveness of precision nanomedicine in addressing neurological conditions. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.

Targeting specific brain districts for advanced nanotherapies: A review from the perspective of precision nanomedicine

Busnelli M.;
2024

Abstract

Numerous studies are focused on nanoparticle penetration into the brain functionalizing them with ligands useful to cross the blood–brain barrier. However, cell targeting is also crucial, given that cerebral pathologies frequently affect specific brain cells or areas. Functionalize nanoparticles with the most appropriate targeting elements, tailor their physical parameters, and consider the brain's complex anatomy are essential aspects for precise therapy and diagnosis. In this review, we addressed the state of the art on targeted nanoparticles for drug delivery in diseased brain regions, outlining progress, limitations, and ongoing challenges. We also provide a summary and overview of general design principles that can be applied to nanotherapies, considering the areas and cell types affected by the most common brain disorders. We then emphasize lingering uncertainties that hinder the translational possibilities of nanotherapies for clinical use. Finally, we offer suggestions for continuing preclinical investigations to enhance the overall effectiveness of precision nanomedicine in addressing neurological conditions. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
2024
Istituto di Neuroscienze - IN - Sede Secondaria Milano
blood–brain barrier
brain
nanomedicine
nanoparticles
targeted drug delivery
File in questo prodotto:
File Dimensione Formato  
WIREs Nanomed Nanobiotechnol - 2024 - Sierri - Targeting specific brain districts for advanced nanotherapies A review from (2).pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.52 MB
Formato Adobe PDF
4.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/510116
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact