FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) has been approved to be the ninth Earth Explorer mission of the European Space Agency and is scheduled for launch in 2027. The core FORUM instrument is a Fourier transform spectrometer, which will, for the first time, measure the upwelling spectral radiance in the far-infrared (FIR) and mid-infrared (MIR) portions of the Earth’s spectrum. These radiances will be processed up to level 2, to determine mainly the vertical profile of water vapor, surface spectral emissivity, and cloud parameters. In this paper, we assess the performance of the FORUM surface spectral emissivity product based on all-sky sensitivity study. In the FIR, we find that the retrieval error is mainly driven by the precipitable water vapor (PWV) in clear-sky conditions. In dry atmospheres, FIR emissivity can be retrieved with an error less than 0.01. In cloudy conditions, small errors can be achieved for optically thin clouds, especially for small values of the PWV. In the MIR, we observe that a large thermal contrast between the surface and the lowest atmospheric layers increases the sensitivity of the measurements to the surface emissivity in clear-sky conditions and an emissivity retrieval error less than 0.01 can usually be achieved. In cloudy conditions, small errors can be achieved for optically thin clouds, especially for large values of the surface temperature. Applying a coarser retrieval grid further reduces retrieval error, at the expense of an increased emissivity smoothing error.

Characterization of Surface Spectral Emissivity Retrieved from EE9-FORUM Simulated Measurements

Sgattoni C.;Ridolfi M.;Zugarini C.;Sgheri L.
2024

Abstract

FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) has been approved to be the ninth Earth Explorer mission of the European Space Agency and is scheduled for launch in 2027. The core FORUM instrument is a Fourier transform spectrometer, which will, for the first time, measure the upwelling spectral radiance in the far-infrared (FIR) and mid-infrared (MIR) portions of the Earth’s spectrum. These radiances will be processed up to level 2, to determine mainly the vertical profile of water vapor, surface spectral emissivity, and cloud parameters. In this paper, we assess the performance of the FORUM surface spectral emissivity product based on all-sky sensitivity study. In the FIR, we find that the retrieval error is mainly driven by the precipitable water vapor (PWV) in clear-sky conditions. In dry atmospheres, FIR emissivity can be retrieved with an error less than 0.01. In cloudy conditions, small errors can be achieved for optically thin clouds, especially for small values of the PWV. In the MIR, we observe that a large thermal contrast between the surface and the lowest atmospheric layers increases the sensitivity of the measurements to the surface emissivity in clear-sky conditions and an emissivity retrieval error less than 0.01 can usually be achieved. In cloudy conditions, small errors can be achieved for optically thin clouds, especially for large values of the surface temperature. Applying a coarser retrieval grid further reduces retrieval error, at the expense of an increased emissivity smoothing error.
2024
Istituto per le applicazioni del calcolo - IAC - Sede Secondaria Sesto Fiorentino (FI)
Istituto per la BioEconomia - IBE
Istituto Nazionale di Ottica - INO - Sede Secondaria di Sesto Fiorentino
Remote sensing, Retrieval of geophysical parameters, Far infrared, Surface spectral emissivity, FORUM
File in questo prodotto:
File Dimensione Formato  
RemoteSensinsEarthSystemScience2024.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.75 MB
Formato Adobe PDF
2.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/510266
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact