The shape of liquid droplets in air plays an important role in the aerodynamic behavior and combustion dynamics of miniaturized propulsion systems such as microsatellites and small drones. Their precise manipulation can yield optimal efficiency in such systems. It is desired to have a minimal representation of droplet shapes using as few parameters as possible to automate shape manipulation using self-learning algorithms, such as reinforcement learning. In this paper, we use a neural compression algorithm to represent, with only two parameters, elliptical and bullet-shaped droplets initially represented with 200 points (400 real numbers) at the droplet boundary. The mapping of many to two points is achieved in two stages. Initially, a Fourier series is formulated to approximate the contour of the droplet. Subsequently, the coefficients of this Fourier series are condensed to lower dimensions utilizing a neural network with a bottleneck architecture. Finally, 5000 synthetically generated droplet shapes were used to train the neural network. With a two-real-number representation, the recovered droplet shapes had excellent overlap with the original ones, with a mean square error of ∼10−3 . Hence, this method compresses the droplet contour to merely two numerical parameters via a fully reversible process, a crucial feature for rendering learning algorithms computationally tractable.

Droplet Shape Representation Using Fourier Series and Autoencoders

Adriano Tiribocchi;Marco Lauricella;Andrea Montessori;Sauro Succi
2024

Abstract

The shape of liquid droplets in air plays an important role in the aerodynamic behavior and combustion dynamics of miniaturized propulsion systems such as microsatellites and small drones. Their precise manipulation can yield optimal efficiency in such systems. It is desired to have a minimal representation of droplet shapes using as few parameters as possible to automate shape manipulation using self-learning algorithms, such as reinforcement learning. In this paper, we use a neural compression algorithm to represent, with only two parameters, elliptical and bullet-shaped droplets initially represented with 200 points (400 real numbers) at the droplet boundary. The mapping of many to two points is achieved in two stages. Initially, a Fourier series is formulated to approximate the contour of the droplet. Subsequently, the coefficients of this Fourier series are condensed to lower dimensions utilizing a neural network with a bottleneck architecture. Finally, 5000 synthetically generated droplet shapes were used to train the neural network. With a two-real-number representation, the recovered droplet shapes had excellent overlap with the original ones, with a mean square error of ∼10−3 . Hence, this method compresses the droplet contour to merely two numerical parameters via a fully reversible process, a crucial feature for rendering learning algorithms computationally tractable.
2024
Istituto Applicazioni del Calcolo ''Mauro Picone''
Machine learning, Autoencoders, Fluid droplets, Microfluidics
File in questo prodotto:
File Dimensione Formato  
durve-et-al-2024-droplet-shape-representation-using-fourier-series-and-autoencoders (1).pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 935.87 kB
Formato Adobe PDF
935.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/510471
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact