The molecular structure of water is dynamic, with intermolecular (H)-bond interactions being modified by both electronic charge transfer and nuclear quantum effects (NQEs). Electronic charge transfer and NQEs potentially change under acidic / basic conditions, but such details have not been measured. Here, we developed correlated vibrational spectroscopy, a symmetry-based method that distinctively separates interacting from non-interacting molecules in self- and cross-correlation spectra, giving access to previously inaccessible information. We found that OH- donated ~8% more negative charge to the H-bond network of water and H3O+ accepted ~4% less negative charge from the H-bond network of water. D2O had ~9% more H-bonds compared to H2O, and acidic solutions displayed more dominant NQEs than basic ones.

Dissecting the hydrogen bond network of water: charge transfer and nuclear quantum effects

Giuseppe Cassone;
2024

Abstract

The molecular structure of water is dynamic, with intermolecular (H)-bond interactions being modified by both electronic charge transfer and nuclear quantum effects (NQEs). Electronic charge transfer and NQEs potentially change under acidic / basic conditions, but such details have not been measured. Here, we developed correlated vibrational spectroscopy, a symmetry-based method that distinctively separates interacting from non-interacting molecules in self- and cross-correlation spectra, giving access to previously inaccessible information. We found that OH- donated ~8% more negative charge to the H-bond network of water and H3O+ accepted ~4% less negative charge from the H-bond network of water. D2O had ~9% more H-bonds compared to H2O, and acidic solutions displayed more dominant NQEs than basic ones.
2024
Istituto per i Processi Chimico-Fisici - IPCF - Sede Messina
Correlated Vibrational Spectroscopy, Ab initio Molecular Dynamics
File in questo prodotto:
File Dimensione Formato  
science.ads4369.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.23 MB
Formato Adobe PDF
2.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/510524
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact