Single-color centers in thin polycrystalline diamond membranes allow the platform to be used in integrated quantum photonics, hybrid quantum systems, and other complex functional materials. While single-crystal diamond membranes are still technologically challenging to fabricate as they cannot be grown on a non-diamond substrate, free-standing polycrystalline diamond membranes can be conveniently fabricated at large-scale from nanocrystalline diamond seeds on a substrate that can be selectively etched. However, their practical application for quantum photonics is so far limited by crystallographic defects, impurities, graphitic grain boundaries, small grain sizes, scattering loss, and strain. In this paper, we report on a single-photon source based on silicon-vacancy color centers in a polycrystalline diamond membrane. We discuss the spectroscopic approach and quantify the photon statistics, obtaining a g2(0) ≈ 0.04. Our findings hold promise for introducing polycrystalline diamond to quantum photonics and hybrid quantum systems.

Single-photon emission from silicon-vacancy color centers in polycrystalline diamond membranes

Lagomarsino S.;Sciortino S.;Agio M.
2024

Abstract

Single-color centers in thin polycrystalline diamond membranes allow the platform to be used in integrated quantum photonics, hybrid quantum systems, and other complex functional materials. While single-crystal diamond membranes are still technologically challenging to fabricate as they cannot be grown on a non-diamond substrate, free-standing polycrystalline diamond membranes can be conveniently fabricated at large-scale from nanocrystalline diamond seeds on a substrate that can be selectively etched. However, their practical application for quantum photonics is so far limited by crystallographic defects, impurities, graphitic grain boundaries, small grain sizes, scattering loss, and strain. In this paper, we report on a single-photon source based on silicon-vacancy color centers in a polycrystalline diamond membrane. We discuss the spectroscopic approach and quantify the photon statistics, obtaining a g2(0) ≈ 0.04. Our findings hold promise for introducing polycrystalline diamond to quantum photonics and hybrid quantum systems.
2024
Istituto Nazionale di Ottica - INO - Sede Secondaria di Sesto Fiorentino
Diamond color center
File in questo prodotto:
File Dimensione Formato  
Appl.Phys.Lett.v124p094001.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/510548
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact