Purpose: Recruitment and activation of inflammatory cells, such as retinal microglia/macrophages, in the subretinal space contribute significantly to the pathogenesis of age-related macular degeneration (AMD). This study aims to explore the functional role of vascular endothelial growth factor (VEGF-A), placental growth factor (PlGF) and VEGF-A/PlGF heterodimer in immune homeostasis and activation during pathological laser-induced choroidal neovascularization (CNV). Methods: To investigate these roles, we utilized the PlGF-DE knockin (KI) mouse model, which is the full functional knockout (KO) of PlGF. In this model, mice express a variant of PlGF, named PlGF-DE, that is unable to bind and activate VEGFR-1 but can still form heterodimer with VEGF-A. Results: Our findings demonstrate that, although there is no difference in healthy conditions, PlGF-DE-KI mice exhibit decreased microglia reactivity and reduced recruitment of both microglia and monocyte-macrophages, compared to wild-type mice during laser-induced CNV. This impairment is associated with a reduction in VEGF receptor 1 (VEGFR-1) phosphorylation in the retinae of PlGF-DE-KI mice compared to C57Bl6/J mice. Corroborating these data, intravitreal delivery of PlGF or VEGF-A/PlGF heterodimer in PlGF-DE-KI mice rescued the immune cell response at the early phase of CNV compared to VEGF-A delivery. Conclusions: In summary, our study suggests that targeting PlGF and the VEGF-A/PlGF heterodimer, thereby preventing VEGFR-1 activation, could represent a potential therapeutic approach for the management of inflammatory processes in diseases such as AMD.

PlGF and VEGF-A/PlGF Heterodimer are Crucial for Recruitment and Activation of Immune Cells During Choroid Neovascularization

Tarallo, Valeria
;
Magliacane Trotta, Sara;Panico, Sonia;Mercadante, Grazia;De Falco, Sandro
2024

Abstract

Purpose: Recruitment and activation of inflammatory cells, such as retinal microglia/macrophages, in the subretinal space contribute significantly to the pathogenesis of age-related macular degeneration (AMD). This study aims to explore the functional role of vascular endothelial growth factor (VEGF-A), placental growth factor (PlGF) and VEGF-A/PlGF heterodimer in immune homeostasis and activation during pathological laser-induced choroidal neovascularization (CNV). Methods: To investigate these roles, we utilized the PlGF-DE knockin (KI) mouse model, which is the full functional knockout (KO) of PlGF. In this model, mice express a variant of PlGF, named PlGF-DE, that is unable to bind and activate VEGFR-1 but can still form heterodimer with VEGF-A. Results: Our findings demonstrate that, although there is no difference in healthy conditions, PlGF-DE-KI mice exhibit decreased microglia reactivity and reduced recruitment of both microglia and monocyte-macrophages, compared to wild-type mice during laser-induced CNV. This impairment is associated with a reduction in VEGF receptor 1 (VEGFR-1) phosphorylation in the retinae of PlGF-DE-KI mice compared to C57Bl6/J mice. Corroborating these data, intravitreal delivery of PlGF or VEGF-A/PlGF heterodimer in PlGF-DE-KI mice rescued the immune cell response at the early phase of CNV compared to VEGF-A delivery. Conclusions: In summary, our study suggests that targeting PlGF and the VEGF-A/PlGF heterodimer, thereby preventing VEGFR-1 activation, could represent a potential therapeutic approach for the management of inflammatory processes in diseases such as AMD.
2024
Istituto di genetica e biofisica "Adriano Buzzati Traverso"- IGB - Sede Napoli
VEGF family, inflammation, choroidal neovascularization (CNV), microglia, monocyte-macrophages, age-related macular degeneration (AMD)
File in questo prodotto:
File Dimensione Formato  
2024-07 Tarallo et al IOVS.pdf

accesso aperto

Descrizione: PlGF and VEGF-A/PlGF Heterodimer are Crucial for Recruitment and Activation of Immune Cells During Choroid Neovascularization
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.18 MB
Formato Adobe PDF
4.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/510564
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact