Mechanically exfoliated multilayer WS2 flakes are used as the channel of field effect transistors for low-power photodetection in the visible and near-infrared (NIR) spectral range. The electrical characterization as a function of the temperature reveals devices with n-type conduction and slightly different Schottky barriers at the drain and source contacts. The WS2 phototransistors can be operated in self-powered mode, yielding both a current and a voltage when exposed to light. The spectral photoresponse in the visible and the NIR ranges shows a high responsivity (4.5 μA/W) around 1250 nm, making the devices promising for telecommunication applications.

Multilayer WS2 for low-power visible and near-infrared phototransistors

Giubileo F.;
2024

Abstract

Mechanically exfoliated multilayer WS2 flakes are used as the channel of field effect transistors for low-power photodetection in the visible and near-infrared (NIR) spectral range. The electrical characterization as a function of the temperature reveals devices with n-type conduction and slightly different Schottky barriers at the drain and source contacts. The WS2 phototransistors can be operated in self-powered mode, yielding both a current and a voltage when exposed to light. The spectral photoresponse in the visible and the NIR ranges shows a high responsivity (4.5 μA/W) around 1250 nm, making the devices promising for telecommunication applications.
2024
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN - Sede Secondaria Fisciano
WS2
photodetector
field effect transistor
File in questo prodotto:
File Dimensione Formato  
2024(04)_Pelella_DiscoverNano_WS2 film s11671-024-04000-0.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.41 MB
Formato Adobe PDF
3.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/510610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact