In this paper we study the ductile breakup of tracer aggregates in an incompressible, homogeneous, and isotropic three-dimensional turbulent flow. The flow dynamics is studied by means of a direct numerical simulation, whereas the Lagrangian velocities and stress statistics along trajectories are obtained by particle tracking. We investigate the breakup dynamics under the hypothesis that aggregates are able to deform and accumulate energy. Within this framework, breakup occurs when the energy transferred to the aggregate by the flow exceeds a critical value. We contrast our predictions for ductile breakup with those obtained for brittle breakup. We observe that turbulence intermittency is crucial for the breakup of brittle aggregates, while it becomes less relevant for ductile aggregates. In the limit of highly ductile aggregates the breakup rate is dictated by the mean properties of the flow. We propose a simple model to capture this behaviour.

Ductile Breakup of Tracer Aggregates in Homogenous Isotropic Turbulence

Lanotte A. S.
Membro del Collaboration Group
2023

Abstract

In this paper we study the ductile breakup of tracer aggregates in an incompressible, homogeneous, and isotropic three-dimensional turbulent flow. The flow dynamics is studied by means of a direct numerical simulation, whereas the Lagrangian velocities and stress statistics along trajectories are obtained by particle tracking. We investigate the breakup dynamics under the hypothesis that aggregates are able to deform and accumulate energy. Within this framework, breakup occurs when the energy transferred to the aggregate by the flow exceeds a critical value. We contrast our predictions for ductile breakup with those obtained for brittle breakup. We observe that turbulence intermittency is crucial for the breakup of brittle aggregates, while it becomes less relevant for ductile aggregates. In the limit of highly ductile aggregates the breakup rate is dictated by the mean properties of the flow. We propose a simple model to capture this behaviour.
2023
Istituto di Nanotecnologia - NANOTEC - Sede Lecce
Breakup, turbulent flows, dctile aggregates
File in questo prodotto:
File Dimensione Formato  
ChemEngTrans2023.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
ductile_arxiv.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 514.62 kB
Formato Adobe PDF
514.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/510779
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact