Bicuspid aortic valve (BAV) is the most common congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that specific gene variants predispose to early-onset complications of BAV (EBAV). We analyzed whole-exome sequences (WESs) to identify rare coding variants that contribute to BAV disease in 215 EBAV-affected families. Predicted damaging variants in candidate genes with moderate or strong supportive evidence to cause developmental cardiac phenotypes were present in 107 EBAV-affected families (50% of total), including genes that cause BAV (9%) or heritable thoracic aortic disease (HTAD, 19%). After appropriate filtration, we also identified 129 variants in 54 candidate genes that are associated with autosomal-dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants drive early-onset presentations of BAV disease.

Whole-exome sequencing uncovers the genetic complexity of bicuspid aortic valve in families with early-onset complications

Andreassi, Mariagrazia;Foffa, Ilenia;
2024

Abstract

Bicuspid aortic valve (BAV) is the most common congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that specific gene variants predispose to early-onset complications of BAV (EBAV). We analyzed whole-exome sequences (WESs) to identify rare coding variants that contribute to BAV disease in 215 EBAV-affected families. Predicted damaging variants in candidate genes with moderate or strong supportive evidence to cause developmental cardiac phenotypes were present in 107 EBAV-affected families (50% of total), including genes that cause BAV (9%) or heritable thoracic aortic disease (HTAD, 19%). After appropriate filtration, we also identified 129 variants in 54 candidate genes that are associated with autosomal-dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants drive early-onset presentations of BAV disease.
2024
Istituto di Fisiologia Clinica - IFC
bicuspid aortic valve
cardiovascular genetics
congenital heart disease
thoracic aortic aneurysm
whole-exome sequencing
File in questo prodotto:
File Dimensione Formato  
2024.02.07.24302406v1.full.pdf

accesso aperto

Descrizione: Whole Exome Sequencing Uncovers the Genetic Complexity of Bicuspid Aortic Valve in Families with Early Onset Complications
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 333.43 kB
Formato Adobe PDF
333.43 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/510790
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact