Thin films of titanium dioxide (TiO2) nanocrystals, widely acknowledged for their unique physical-chemical properties and functionalities, are used in disparate technological fields, including photovoltaics, sensing, environmental remediation and energy storage. In this paper, the preparation of thin films consisting of anatase-phase TiO2 nanorods deposited using the matrix-assisted pulsed laser evaporation (MAPLE) technique and their characterization in terms of morphology, elemental composition and wettability are presented and discussed. Particular attention is paid to the effects of the laser fluence, varied over a broad range (F = 25, 50, 100 mJ/cm(2)), and to the role of the capping surfactants bound to the surface of the nanorod precursors. Whereas increasing fluence favored a partial removal of the surface-bound surfactants, a post-growth UV-light-driven photocatalytic treatment of the films was found to be necessary to reduce the incorporated fraction of organics to a further substantial extent. It was noteworthy that, under our experimental conditions, the distinctive surface patterns and roughness that commonly degrade the morphology of films deposited using the MAPLE technique were not observable. This previously unreported experimental evidence was rationalized on the basis of the interaction dynamics between solvent/solute droplets ejected from the laser-irradiated target and the rough surfaces of the growing film.

Colloidal TiO2 Nanorod Films Deposited Using the MAPLE Technique: Role of the Organic Capping and Absence of Characteristic Surface Patterns

Cesaria M
;
Taurino A
;
Cozzoli PD;Arima V;Caricato AP
2023

Abstract

Thin films of titanium dioxide (TiO2) nanocrystals, widely acknowledged for their unique physical-chemical properties and functionalities, are used in disparate technological fields, including photovoltaics, sensing, environmental remediation and energy storage. In this paper, the preparation of thin films consisting of anatase-phase TiO2 nanorods deposited using the matrix-assisted pulsed laser evaporation (MAPLE) technique and their characterization in terms of morphology, elemental composition and wettability are presented and discussed. Particular attention is paid to the effects of the laser fluence, varied over a broad range (F = 25, 50, 100 mJ/cm(2)), and to the role of the capping surfactants bound to the surface of the nanorod precursors. Whereas increasing fluence favored a partial removal of the surface-bound surfactants, a post-growth UV-light-driven photocatalytic treatment of the films was found to be necessary to reduce the incorporated fraction of organics to a further substantial extent. It was noteworthy that, under our experimental conditions, the distinctive surface patterns and roughness that commonly degrade the morphology of films deposited using the MAPLE technique were not observable. This previously unreported experimental evidence was rationalized on the basis of the interaction dynamics between solvent/solute droplets ejected from the laser-irradiated target and the rough surfaces of the growing film.
2023
Istituto di Nanotecnologia - NANOTEC - Sede Lecce
Istituto per la Microelettronica e Microsistemi - IMM - Sede Secondaria Lecce
thin films, TiO2 nanorods, organic capping, MAPLE technique, laser fluence, elemental/morphological analyses, photocatalytic degradation, missing MAPLE surface patterns
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/510914
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact