Background: Silver (Ag) nanoparticles (NPs) are used increasingly in consumer and healthcare fabrics due to their antimicrobial properties. Abrasive leaching experiments have shown that AgNPs can be released during textile wear and cause a dermal exposure. Derived-no-effect-limit value for AgNPs ranges from 0.01 to 0.0375 mg/kg-body-weight, and thus, low exposures levels can cause relevant risk. Methods In this study AgNP release from textiles by artificial sweat immersion and mechanical stress was investigated. A mass balance model was used to calculate dermal Ag exposure and potential intake via percutaneous absorption and inadvertent (peri-)oral intake during wear of face mask, suit with a full body exposure and gloves. Mass flow analysis was performed for up to 8-h wear time and by using Ag penetration rate constants reported for fresh-, cryopreserved- and glycerolized skin grafts. Results: Dermal intake risk characterization ratio (RCR) during 8-h wear time for glycerolized skin was up to 0.02 for face mask and 0.9 for full body wear in a worst-case condition. Wearing gloves for 1-h followed by single unintentional fingertip mouthing (contact area 11.5 cm2) resulted in an RCR of 0.0002. RCR varied depending on the type of textile-product, exposure wear duration and skin type. Conclusions:

Exposure assessment and risks associated with wearing silver nanoparticle-coated textiles

Alessia Nicosia;Fabrizio Ravegnani;Irini Furxhi;Andrea Brigliadori;Ilaria Zanoni;Magda Blosi;Anna Costa;Franco Belosi;
2024

Abstract

Background: Silver (Ag) nanoparticles (NPs) are used increasingly in consumer and healthcare fabrics due to their antimicrobial properties. Abrasive leaching experiments have shown that AgNPs can be released during textile wear and cause a dermal exposure. Derived-no-effect-limit value for AgNPs ranges from 0.01 to 0.0375 mg/kg-body-weight, and thus, low exposures levels can cause relevant risk. Methods In this study AgNP release from textiles by artificial sweat immersion and mechanical stress was investigated. A mass balance model was used to calculate dermal Ag exposure and potential intake via percutaneous absorption and inadvertent (peri-)oral intake during wear of face mask, suit with a full body exposure and gloves. Mass flow analysis was performed for up to 8-h wear time and by using Ag penetration rate constants reported for fresh-, cryopreserved- and glycerolized skin grafts. Results: Dermal intake risk characterization ratio (RCR) during 8-h wear time for glycerolized skin was up to 0.02 for face mask and 0.9 for full body wear in a worst-case condition. Wearing gloves for 1-h followed by single unintentional fingertip mouthing (contact area 11.5 cm2) resulted in an RCR of 0.0002. RCR varied depending on the type of textile-product, exposure wear duration and skin type. Conclusions:
2024
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Nanoparticle
Dermal exposure
Mass balance
Release
Dermal intake
Risk characterization ratio
Conditions of use
REACH
File in questo prodotto:
File Dimensione Formato  
82a38e08-dadd-48da-9b04-899bf8bd3486_17254_-_antti_joonas_koivisto_v2.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/510944
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact