For a graph G and a positive integer c, let Mc(G) be the size of a subgraph of G induced by a randomly sampled subset of c vertices. Second-order moments of Mc(G) encode part of the structure of G. We use this fact, coupled to classical moment inequalities, to prove graph theoretical results, to give combinatorial identities, to bound the size of the c-densest subgraph from below and the size of the c-sparsest subgraph from above, and to provide bounds for approximate enumeration of trivial subgraphs.

Second-order moments of the size of randomly induced subgraphs of given order

Nicola Apollonio
Primo
2024

Abstract

For a graph G and a positive integer c, let Mc(G) be the size of a subgraph of G induced by a randomly sampled subset of c vertices. Second-order moments of Mc(G) encode part of the structure of G. We use this fact, coupled to classical moment inequalities, to prove graph theoretical results, to give combinatorial identities, to bound the size of the c-densest subgraph from below and the size of the c-sparsest subgraph from above, and to provide bounds for approximate enumeration of trivial subgraphs.
2024
Istituto per le applicazioni del calcolo "Mauro Picone" - IAC
Induced subgraph sizesTail inequalitiesTrivial subgraphsDensest and sparsest subgraphVariance inequalities
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0166218X24001732-main_print.pdf

non disponibili

Descrizione: articolo
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 413.43 kB
Formato Adobe PDF
413.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/510994
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact