In this paper, a wireless potentiostat code-named ElectroSense, for interfacing of wearable electrochemical biosensors, will be presented. The system is devoted to non-invasive monitoring of glucose in wearable medical applications. Differently from other potentiostats in literature, which use digital-to-analog converters (DACs) as discrete components or integrated in high-end microcontrollers, in this work the pulse width modulation (PWM) technique is exploited through PWM-DAC approach to generate signals. The ubiquitous presence of integrated PWM peripherals in low-end microcontrollers, which generally also integrate analog-to-digital converters (ADCs), enables both the generation and acquisition of read-out signals on a single cheap electronic device without additional hardware. By this way, system’s production costs, power consumption, and system’s size are greatly reduced with respect to other solutions. All these features allow the system’s adoption in wearable healthcare Internet-of-things (IoT) ecosystems. A description of both the sensing technology and the circuit will be discussed in detail, emphasizing advantages and drawbacks of the PWM-DAC approach. Experimental measurements will prove the efficacy of the proposed electronic system for non-invasive monitoring of glucose in wearable medical applications.
A Wireless Potentiostat Exploiting PWM-DAC for Interfacing of Wearable Electrochemical Biosensors in Non-Invasive Monitoring of Glucose Level
Francioso L.;Sciurti E.;Bellisario D.;
2024
Abstract
In this paper, a wireless potentiostat code-named ElectroSense, for interfacing of wearable electrochemical biosensors, will be presented. The system is devoted to non-invasive monitoring of glucose in wearable medical applications. Differently from other potentiostats in literature, which use digital-to-analog converters (DACs) as discrete components or integrated in high-end microcontrollers, in this work the pulse width modulation (PWM) technique is exploited through PWM-DAC approach to generate signals. The ubiquitous presence of integrated PWM peripherals in low-end microcontrollers, which generally also integrate analog-to-digital converters (ADCs), enables both the generation and acquisition of read-out signals on a single cheap electronic device without additional hardware. By this way, system’s production costs, power consumption, and system’s size are greatly reduced with respect to other solutions. All these features allow the system’s adoption in wearable healthcare Internet-of-things (IoT) ecosystems. A description of both the sensing technology and the circuit will be discussed in detail, emphasizing advantages and drawbacks of the PWM-DAC approach. Experimental measurements will prove the efficacy of the proposed electronic system for non-invasive monitoring of glucose in wearable medical applications.File | Dimensione | Formato | |
---|---|---|---|
electronics-13-01128-v2.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.66 MB
Formato
Adobe PDF
|
2.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.