Amplifier-based pump-probe systems, while versatile, often suffer from complexity and low measurement speeds, especially when probing samples require low excitation fluences. To address these limitations, we introduce a pump-probe system that leverages a 60-MHz single-cavity dual-comb oscillator and an ultra-low noise supercontinuum. The setup can operate in equivalent time sampling or in programmable optical delay generation modes. We employ this system to study the wavelength-dependent excited-state dynamics of the non-fullerene electron acceptor Y6, a compound of interest in solar cell development, with excitation fluences as low as 1 nJ/cm2, well below the onset of nonlinear exciton annihilation effects. Our measurements reach a shot-noise limited sensitivity in differential transmission of 3.4·10–7. The results demonstrate the system’s potential to advance the field of ultrafast spectroscopy.
High-sensitivity pump-probe spectroscopy with a dual-comb laser and a PM-Andi supercontinuum
Franco Valduga de Almeida CamargoConceptualization
;Giulio Cerullo;
2024
Abstract
Amplifier-based pump-probe systems, while versatile, often suffer from complexity and low measurement speeds, especially when probing samples require low excitation fluences. To address these limitations, we introduce a pump-probe system that leverages a 60-MHz single-cavity dual-comb oscillator and an ultra-low noise supercontinuum. The setup can operate in equivalent time sampling or in programmable optical delay generation modes. We employ this system to study the wavelength-dependent excited-state dynamics of the non-fullerene electron acceptor Y6, a compound of interest in solar cell development, with excitation fluences as low as 1 nJ/cm2, well below the onset of nonlinear exciton annihilation effects. Our measurements reach a shot-noise limited sensitivity in differential transmission of 3.4·10–7. The results demonstrate the system’s potential to advance the field of ultrafast spectroscopy.File | Dimensione | Formato | |
---|---|---|---|
justinas_OptLett_2024.pdf
accesso aperto
Descrizione: published paper
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.99 MB
Formato
Adobe PDF
|
2.99 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.