The production of advanced functional ceramics from dry raw powders through the solid-state reaction method is a highly industrially relevant process used by numerous researchers and industries around the world. Functional ceramics enable many cutting-edge applications and are, as such, a critical material class. Despite this, the development of high-throughput platforms for accelerated ceramics development from dry powders has not been intensively investigated and has lagged behind other combinatorial technologies, such as solution- and vaporbased systems, due to the complexity of automating the various steps in this powder synthesis route while maintaining the phase purity of resulting materials. As such, there are numerous important opportunities for the accelerated experimental synthesis and characterization of functional ceramics in a high-throughput platform that will allow for the production of large, homogeneous datasets required for machine learning, which will be discussed in this review. In addition, limitations and challenges of the various processing steps will also be presented.

Review of the opportunities and limitations for powder-based high-throughput solid-state processing of advanced functional ceramics

Buscaglia, Vincenzo;
2024

Abstract

The production of advanced functional ceramics from dry raw powders through the solid-state reaction method is a highly industrially relevant process used by numerous researchers and industries around the world. Functional ceramics enable many cutting-edge applications and are, as such, a critical material class. Despite this, the development of high-throughput platforms for accelerated ceramics development from dry powders has not been intensively investigated and has lagged behind other combinatorial technologies, such as solution- and vaporbased systems, due to the complexity of automating the various steps in this powder synthesis route while maintaining the phase purity of resulting materials. As such, there are numerous important opportunities for the accelerated experimental synthesis and characterization of functional ceramics in a high-throughput platform that will allow for the production of large, homogeneous datasets required for machine learning, which will be discussed in this review. In addition, limitations and challenges of the various processing steps will also be presented.
2024
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia (ICMATE) - Sede Secondaria Genova
High-throughput, Functional ceramics, Ceramics processing, Accelerated materials discovery, Solid-state synthesis
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0955221924006538-main-2.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.9 MB
Formato Adobe PDF
6.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/511300
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact