The co-self-assembly of a blue-light emitting organogelator and specifically designed green and red emitting hosts yields light-harvesting nanofibers with tunable emissive properties. In particular, under near-UV excitation white-light emission is achieved in organogels and their constituting nanofibers as demonstrated by confocal fluorescence microspectroscopy. Steady-state and time-resolved emission spectroscopies reveal that color tuning in three component nanofibers is achieved exploiting excitation energy transfers occurring between the blue-emitting anthracene derivative and the green- and red-emitting tetracenes, whereas the latter emission is further sensitized through a cascade blue-to-green-to-red transfer sequence. Moreover, excitation energy migrates through the blue-emitting components by exciton hopping before being transferred to the acceptors, thus contributing to the light-harvesting process. © 2012 American Chemical Society.
Exploiting direct and cascade energy transfer for color-tunable and white-light emission in three-component self-assembled nanofibers
Giansante C.;
2012
Abstract
The co-self-assembly of a blue-light emitting organogelator and specifically designed green and red emitting hosts yields light-harvesting nanofibers with tunable emissive properties. In particular, under near-UV excitation white-light emission is achieved in organogels and their constituting nanofibers as demonstrated by confocal fluorescence microspectroscopy. Steady-state and time-resolved emission spectroscopies reveal that color tuning in three component nanofibers is achieved exploiting excitation energy transfers occurring between the blue-emitting anthracene derivative and the green- and red-emitting tetracenes, whereas the latter emission is further sensitized through a cascade blue-to-green-to-red transfer sequence. Moreover, excitation energy migrates through the blue-emitting components by exciton hopping before being transferred to the acceptors, thus contributing to the light-harvesting process. © 2012 American Chemical Society.File | Dimensione | Formato | |
---|---|---|---|
Journal of Physical Chemistry C, 2012, 116 (41) 21706-21716.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.1 MB
Formato
Adobe PDF
|
2.1 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.