Consuming an unbalanced diet and being overweight represent a global health problem in young people and adults of both sexes, and may lead to metabolic syndrome. The diet-induced obesity (DIO) model in the C57BL/6J mouse substrain that mimics the gradual weight gain in humans consuming a "Western-type" (WD) diet is of great interest. This study aims to characterize this animal model, using high-frequency ultrasound imaging (HFUS) as a complementary tool to longitudinally monitor changes in the liver, heart and kidney. Long-term WD feeding increased mice body weight (BW), liver/BW ratio and body condition score (BCS), transaminases, glucose and insulin, and caused dyslipidemia and insulin resistance. Echocardiography revealed subtle cardiac remodeling in WD-fed mice, highlighting a significant age-diet interaction for some left ventricular morphofunctional parameters. Qualitative and parametric HFUS analyses of the liver in WD-fed mice showed a progressive increase in echogenicity and echotexture heterogeneity, and equal or higher brightness of the renal cortex. Furthermore, renal circulation was impaired in WD-fed female mice. The ultrasound and histopathological findings were concordant. Overall, HFUS can improve the translational value of preclinical DIO models through an integrated approach with conventional methods, enabling a comprehensive identification of early stages of diseases in vivo and non-invasively, according to the 3Rs.
Integrated Ultrasound Characterization of the Diet-Induced Obesity (Dio) Model in Young Adult C57bl/6j Mice: Assessment of Cardiovascular, Renal and Hepatic Changes
Gargiulo, Sara
Primo
;Inzalaco, Giovanni;Gherardini, Lisa;Chiariello, MarioUltimo
2024
Abstract
Consuming an unbalanced diet and being overweight represent a global health problem in young people and adults of both sexes, and may lead to metabolic syndrome. The diet-induced obesity (DIO) model in the C57BL/6J mouse substrain that mimics the gradual weight gain in humans consuming a "Western-type" (WD) diet is of great interest. This study aims to characterize this animal model, using high-frequency ultrasound imaging (HFUS) as a complementary tool to longitudinally monitor changes in the liver, heart and kidney. Long-term WD feeding increased mice body weight (BW), liver/BW ratio and body condition score (BCS), transaminases, glucose and insulin, and caused dyslipidemia and insulin resistance. Echocardiography revealed subtle cardiac remodeling in WD-fed mice, highlighting a significant age-diet interaction for some left ventricular morphofunctional parameters. Qualitative and parametric HFUS analyses of the liver in WD-fed mice showed a progressive increase in echogenicity and echotexture heterogeneity, and equal or higher brightness of the renal cortex. Furthermore, renal circulation was impaired in WD-fed female mice. The ultrasound and histopathological findings were concordant. Overall, HFUS can improve the translational value of preclinical DIO models through an integrated approach with conventional methods, enabling a comprehensive identification of early stages of diseases in vivo and non-invasively, according to the 3Rs.File | Dimensione | Formato | |
---|---|---|---|
jimaging-10-00217-v2 (1).pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
9.04 MB
Formato
Adobe PDF
|
9.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.