Velocity distribution plays a fundamental role in understanding the hydrodynamics of open-channel flow. Among a multitude of approaches, the entropy-based approach holds great promise in achieving a reasonable characterisation of the velocity distribution. In entropy-based methods, the distribution depends on a key parameter, known as the entropy parameter (a function of the time-averaged mean velocity and maximum velocity), that relates to channel characteristics, such as channel roughness and channel bed slopes. The entropy parameter was regarded as constant for lack of experimental evidence, which would otherwise demonstrate if it had any correlation with channel properties. A series of experiments were conducted to collect velocity data in the laboratory flume for seven different values of the channel bed slope. The experimental data analysis revealed dissimilar fluctuations in entropy parameter values with varying bed slopes, with the lowest coefficient of variation in Renyi’s (∼0.5%) and the highest in Shannon’s case (∼10%). Performance evaluation of the predicted results substantiated good accuracy for all three entropies with the best results of Renyi entropy and lent strong support for using a constant (overall average) value of the entropy parameter for a specific channel cross-section rather than separate values for each channel bed slope

Influence of the channel bed slope on Shannon, Tsallis, and Renyi entropy parameters

Tommaso Moramarco;
2023

Abstract

Velocity distribution plays a fundamental role in understanding the hydrodynamics of open-channel flow. Among a multitude of approaches, the entropy-based approach holds great promise in achieving a reasonable characterisation of the velocity distribution. In entropy-based methods, the distribution depends on a key parameter, known as the entropy parameter (a function of the time-averaged mean velocity and maximum velocity), that relates to channel characteristics, such as channel roughness and channel bed slopes. The entropy parameter was regarded as constant for lack of experimental evidence, which would otherwise demonstrate if it had any correlation with channel properties. A series of experiments were conducted to collect velocity data in the laboratory flume for seven different values of the channel bed slope. The experimental data analysis revealed dissimilar fluctuations in entropy parameter values with varying bed slopes, with the lowest coefficient of variation in Renyi’s (∼0.5%) and the highest in Shannon’s case (∼10%). Performance evaluation of the predicted results substantiated good accuracy for all three entropies with the best results of Renyi entropy and lent strong support for using a constant (overall average) value of the entropy parameter for a specific channel cross-section rather than separate values for each channel bed slope
2023
Istituto di Ricerca per la Protezione Idrogeologica - IRPI
bed slope, channel cross-section, entropy parameter, Renyi entropy, Shannon entropy, Tsallis entropy, velocity distribution
File in questo prodotto:
File Dimensione Formato  
Gupinder_2023008.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 801.08 kB
Formato Adobe PDF
801.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/511453
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact