Background/Objectives: Managing blood glucose levels effectively remains a significant challenge for individuals with diabetes. Traditional methods often lack the flexibility needed for personalized care. This study explores the potential of reinforcement learning-based approaches, which mimic human learning and adapt strategies through ongoing interactions, in creating dynamic and personalized blood glucose management plans. Methods: We developed a mathematical model specifically for patients with type IVP diabetes, validated with data from 10 patients and 17 key parameters. The model includes continuous glucose monitoring (CGM) noise and random carbohydrate intake to simulate real-life conditions. A closed-loop system was designed to enable the application of reinforcement learning algorithms. Results: By implementing a Policy Optimization (PPO) branch, we achieved an average Time in Range (TIR) metric of 73%, indicating improved blood glucose control. Conclusions: This study presents a personalized insulin therapy solution using reinforcement learning. Our closed-loop model offers a promising approach for improving blood glucose regulation, with potential applications in personalized diabetes management.

Reinforcement Learning: A Paradigm Shift in Personalized Blood Glucose Management for Diabetes

De Gaetano A.;
2024

Abstract

Background/Objectives: Managing blood glucose levels effectively remains a significant challenge for individuals with diabetes. Traditional methods often lack the flexibility needed for personalized care. This study explores the potential of reinforcement learning-based approaches, which mimic human learning and adapt strategies through ongoing interactions, in creating dynamic and personalized blood glucose management plans. Methods: We developed a mathematical model specifically for patients with type IVP diabetes, validated with data from 10 patients and 17 key parameters. The model includes continuous glucose monitoring (CGM) noise and random carbohydrate intake to simulate real-life conditions. A closed-loop system was designed to enable the application of reinforcement learning algorithms. Results: By implementing a Policy Optimization (PPO) branch, we achieved an average Time in Range (TIR) metric of 73%, indicating improved blood glucose control. Conclusions: This study presents a personalized insulin therapy solution using reinforcement learning. Our closed-loop model offers a promising approach for improving blood glucose regulation, with potential applications in personalized diabetes management.
2024
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
Istituto per la Ricerca e l'Innovazione Biomedica -IRIB
artificial intelligence
blood glucose levels
closed-loop insulin delivery systems
diabetes
dynamic strategies
glucose control
monitoring
patient profiles
personalized management
predictive models
reinforcement learning
File in questo prodotto:
File Dimensione Formato  
2024 Denes-Fazakas - Reinforcement Learning. A Paradigm Shift in Personalized Blood Glucose Management for Diabetes.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 902.09 kB
Formato Adobe PDF
902.09 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/511541
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact