Ni nanoparticles supported on graphene-based materials were tested as catalysts for the oxygen reduction reaction (ORR) to be used in anion exchange membrane fuel cells (AEMFCs). The introduction of N into the graphene structure produced an enhancement of electrocatalytic activity by improving electron transfer and creating additional active sites for the ORR. Materials containing both N and S demonstrated the highest stability, showing only a 3% performance loss after a 10 h stability test and therefore achieving the best overall performance. This long-term durability is attributed to the synergetic effect of Ni nanoparticles and bi-doped (S/N)-reduced graphene oxide. The findings suggest that the strategic incorporation of both nitrogen and sulphur into the graphene structure plays a crucial role in optimising the electrocatalytic properties of Ni-based catalysts.
Ni Nanoparticles Supported on Graphene-Based Materials as Highly Stable Catalysts for the Cathode of Alkaline Membrane Fuel Cells
Bellini, Marco;Miller, Hamish A.;Lavacchi, Alessandro;
2024
Abstract
Ni nanoparticles supported on graphene-based materials were tested as catalysts for the oxygen reduction reaction (ORR) to be used in anion exchange membrane fuel cells (AEMFCs). The introduction of N into the graphene structure produced an enhancement of electrocatalytic activity by improving electron transfer and creating additional active sites for the ORR. Materials containing both N and S demonstrated the highest stability, showing only a 3% performance loss after a 10 h stability test and therefore achieving the best overall performance. This long-term durability is attributed to the synergetic effect of Ni nanoparticles and bi-doped (S/N)-reduced graphene oxide. The findings suggest that the strategic incorporation of both nitrogen and sulphur into the graphene structure plays a crucial role in optimising the electrocatalytic properties of Ni-based catalysts.File | Dimensione | Formato | |
---|---|---|---|
Nanomaterials 2024, 14, 176.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.75 MB
Formato
Adobe PDF
|
3.75 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.