High dissolution of anticancer drugs directly adsorbed onto porous carriers is indispensable for the development of drug delivery systems with high bioavailability. We report direct adsorption/loading of the anticancer drug letrozole (LTZ) onto the clinoptilolite (CLI) zeolite after the surface activation. In vitro LTZ dissolution from the CLI zeolites reached 95 % after 23 h in an acidic medium, being faster than the dissolution of the pure LTZ molecules. Fast dissolution occurs due to uniform exposure of the LTZ onto the external surface of the CLI zeolites, being accessible to the solvent for dissolution. On the other hand, the LTZ molecules were hidden in the bulk phase, giving a slow dissolution rate. Small positive value of the CLI/LTZ adsorption energy of 0.06 eV suggests that the release process is favourable in aqueous media. The main merit of the CLI/LTZ system is its quick onset of action and high bioavailability. This work demonstrates a possibility of enhancement of the dissolution of poorly soluble LTZ from the CLI zeolite, being promising for the further development of drug delivery systems.
Enhanced dissolution of anticancer drug letrozole from mesoporous zeolite clinoptilolite
Elisa MercadelliFormal Analysis
;Davide GardiniFormal Analysis
;Laura SilvestroniFormal Analysis
;Chiara ZanelliFormal Analysis
;Laura EspositoFormal Analysis
;
2024
Abstract
High dissolution of anticancer drugs directly adsorbed onto porous carriers is indispensable for the development of drug delivery systems with high bioavailability. We report direct adsorption/loading of the anticancer drug letrozole (LTZ) onto the clinoptilolite (CLI) zeolite after the surface activation. In vitro LTZ dissolution from the CLI zeolites reached 95 % after 23 h in an acidic medium, being faster than the dissolution of the pure LTZ molecules. Fast dissolution occurs due to uniform exposure of the LTZ onto the external surface of the CLI zeolites, being accessible to the solvent for dissolution. On the other hand, the LTZ molecules were hidden in the bulk phase, giving a slow dissolution rate. Small positive value of the CLI/LTZ adsorption energy of 0.06 eV suggests that the release process is favourable in aqueous media. The main merit of the CLI/LTZ system is its quick onset of action and high bioavailability. This work demonstrates a possibility of enhancement of the dissolution of poorly soluble LTZ from the CLI zeolite, being promising for the further development of drug delivery systems.File | Dimensione | Formato | |
---|---|---|---|
uscito su J coll and Interf sci.pdf
solo utenti autorizzati
Descrizione: Full length article
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
4.82 MB
Formato
Adobe PDF
|
4.82 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.