Stellar in-flight calibrations have a relevant impact on the capability of space optical instruments, such as telescopes or cameras, to provide reliable scientific products, i.e., accurately calibrated data. Indeed, by using the in-flight star images, instrument optical performance can be checked and compared with the on-ground measurements. The analysis of star images carried out throughout the entire lifetime of the instrument in space will enable tracking changes in instrument performance and sensitivity due to degradation or misalignment of the optical components. In this paper, we present the concept, the necessary input and the available outputs of the simulations performed to predict the stars visible in the field of view (FoV) of a specific space instrument. As an example of the method, its application to two specific cases, the Metis coronagraph onboard Solar Orbiter and the stereo camera STereo Channel (STC) onboard BepiColombo, are given. Due to their proximity to the Sun, and to Mercury for STC, both instruments operate under harsh environmental conditions in terms of radiation exposure ((e.g., cosmic rays and SEP), high temperatures and significant temperature variations. Therefore, it is crucial to monitor their optical performances.

Simulations for In-Flight Stellar Calibration Aimed at Monitoring Space Instruments’ Optical Performance

Chiara Casini
Primo
;
Paolo Chioetto;Fabio Frassetto;Paola Zuppella;Vania Da Deppo
Ultimo
2024

Abstract

Stellar in-flight calibrations have a relevant impact on the capability of space optical instruments, such as telescopes or cameras, to provide reliable scientific products, i.e., accurately calibrated data. Indeed, by using the in-flight star images, instrument optical performance can be checked and compared with the on-ground measurements. The analysis of star images carried out throughout the entire lifetime of the instrument in space will enable tracking changes in instrument performance and sensitivity due to degradation or misalignment of the optical components. In this paper, we present the concept, the necessary input and the available outputs of the simulations performed to predict the stars visible in the field of view (FoV) of a specific space instrument. As an example of the method, its application to two specific cases, the Metis coronagraph onboard Solar Orbiter and the stereo camera STereo Channel (STC) onboard BepiColombo, are given. Due to their proximity to the Sun, and to Mercury for STC, both instruments operate under harsh environmental conditions in terms of radiation exposure ((e.g., cosmic rays and SEP), high temperatures and significant temperature variations. Therefore, it is crucial to monitor their optical performances.
2024
Istituto di fotonica e nanotecnologie - IFN - Sede Secondaria Padova
In-flight calibration · Space instruments · Metis · STC
File in questo prodotto:
File Dimensione Formato  
s42496-024-00219-3.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.26 MB
Formato Adobe PDF
2.26 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/511874
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact