This study collects the results obtained using the Getis-Ord local spatial autocorrelation index (Gi) with the aim of improving the classification of burned area detection maps generated from spectral indices (i.e., dNBR index) derived from Sentinel-2 satellite data. Therefore, the work proposes an adaptive thresholding approach that also includes the application of a similarity index (Sorensen–Dice Similarity Index) with the aim of adaptively correcting classification errors (false-positive burned pixels) related to the spectral response of burned/unburned areas. In this way, two new indices derived from the application of the Getis-Ord local autocorrelation analysis were created to test their effectiveness. Three wildfire events were considered, two of which occurred in Southern Italy in the summer of 2017 and one in Sardinia in the summer of 2019. The accuracy assessment analysis was carried out using the CEMS (Copernicus Emergency Management Service) on-demand maps. The results show the remarkable performance of the two new indices in terms of their ability to reduce the false positives generated by dNBR. In the three sites considered, the false-positive reduction percentage was around 95–96%. The proposed approach seems to be adaptable to different vegetation contexts, and above all, it could be a useful tool for mapping burned areas to support post-fire management activities.

Application of Getis-Ord Correlation Index (Gi) for Burned Area Detection Improvement in Mediterranean Ecosystems (Southern Italy and Sardinia) Using Sentinel-2 Data

Lanorte A.;Nole G.
Co-primo
Methodology
;
Cillis G.
2024

Abstract

This study collects the results obtained using the Getis-Ord local spatial autocorrelation index (Gi) with the aim of improving the classification of burned area detection maps generated from spectral indices (i.e., dNBR index) derived from Sentinel-2 satellite data. Therefore, the work proposes an adaptive thresholding approach that also includes the application of a similarity index (Sorensen–Dice Similarity Index) with the aim of adaptively correcting classification errors (false-positive burned pixels) related to the spectral response of burned/unburned areas. In this way, two new indices derived from the application of the Getis-Ord local autocorrelation analysis were created to test their effectiveness. Three wildfire events were considered, two of which occurred in Southern Italy in the summer of 2017 and one in Sardinia in the summer of 2019. The accuracy assessment analysis was carried out using the CEMS (Copernicus Emergency Management Service) on-demand maps. The results show the remarkable performance of the two new indices in terms of their ability to reduce the false positives generated by dNBR. In the three sites considered, the false-positive reduction percentage was around 95–96%. The proposed approach seems to be adaptable to different vegetation contexts, and above all, it could be a useful tool for mapping burned areas to support post-fire management activities.
2024
Istituto di Metodologie per l'Analisi Ambientale - IMAA
burned area mapping
CEMS
Italy
Sentinel-2
similarity index
spatial autocorrelation
File in questo prodotto:
File Dimensione Formato  
remotesensing-16-02943-1.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 42.18 MB
Formato Adobe PDF
42.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/512023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact