The acousto-electric (AE) effect associated with the propagation of the Rayleigh wave in ZnO half-space was theoretically investigated by studying the changes in wave velocity and propagation loss induced by in-depth inhomogeneous changes in the ZnO electrical conductivity. An exponentially decaying profile for the electrical conductivity was attributed to the ZnO half-space, for some values of the exponential decay constant (from 100 to 500 nm), in order to simulate the photoconductivity effect induced by ultra-violet illumination. The calculated Rayleigh wave velocity and attenuation vs. ZnO conductivity curves have the form of a double-relaxation response as opposed to the single-relaxation response which characterizes the well-known AE effect due to surface conductivity changes onto piezoelectric media. As to the author’s knowledge, this is the first time the double-relaxation AE effect has been theoretically predicted.
Acoustoelectric Effect for Rayleigh Wave in ZnO Produced by an Inhomogeneous In-Depth Electrical Conductivity Profile
Caliendo C.
Primo
Writing – Original Draft Preparation
2023
Abstract
The acousto-electric (AE) effect associated with the propagation of the Rayleigh wave in ZnO half-space was theoretically investigated by studying the changes in wave velocity and propagation loss induced by in-depth inhomogeneous changes in the ZnO electrical conductivity. An exponentially decaying profile for the electrical conductivity was attributed to the ZnO half-space, for some values of the exponential decay constant (from 100 to 500 nm), in order to simulate the photoconductivity effect induced by ultra-violet illumination. The calculated Rayleigh wave velocity and attenuation vs. ZnO conductivity curves have the form of a double-relaxation response as opposed to the single-relaxation response which characterizes the well-known AE effect due to surface conductivity changes onto piezoelectric media. As to the author’s knowledge, this is the first time the double-relaxation AE effect has been theoretically predicted.File | Dimensione | Formato | |
---|---|---|---|
sensors-23-01422-v2.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.92 MB
Formato
Adobe PDF
|
3.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.