AlN doped with transition metals becomes the key for high performance acoustic wave devices due to its improved piezoelectricity after the incorporation of dopants. In this paper, solidly mounted resonator (SMR) based on Yttrium (Y) doped AlN and operates in thickness shear (TS) mode is numerically studied for liquids characterization. The modeling of the TS-SMR is done by finite element analysis and the results are compared to experimental data for validation. After that, the effect of Y concentrations on the acoustic displacement profiles, the resonance frequency and the admittance of the SMR is investigated. The sensitivity of the TS mode resonator to liquids mass loading, viscosity and conductivity is studied for different Y concentrations and different glycerol-in-water contents. The obtained results show that doping AlN with Y enhances the electromechanical and liquids sensing capabilities of TS-SMR and contributes in the development of high sensitive sensors for liquids characterization.

AlN doped with transition metals becomes the key for high performance acoustic wave devices due to its improved piezoelectricity after the incorporation of dopants. In this paper, solidly mounted resonator (SMR) based on Yttrium (Y) doped AlN and operates in thickness shear (TS) mode is numerically studied for liquids characterization. The modeling of the TS-SMR is done by finite element analysis and the results are compared to experimental data for validation. After that, the effect of Y concentrations on the acoustic displacement profiles, the resonance frequency and the admittance of the SMR is investigated. The sensitivity of the TS mode resonator to liquids mass loading, viscosity and conductivity is studied for different Y concentrations and different glycerol-in-water contents. The obtained results show that doping AlN with Y enhances the electromechanical and liquids sensing capabilities of TS-SMR and contributes in the development of high sensitive sensors for liquids characterization.

Thickness shear SMR resonator based on Yttrium-doped AlN for high sensitive liquid sensors

C. Caliendo
2022

Abstract

AlN doped with transition metals becomes the key for high performance acoustic wave devices due to its improved piezoelectricity after the incorporation of dopants. In this paper, solidly mounted resonator (SMR) based on Yttrium (Y) doped AlN and operates in thickness shear (TS) mode is numerically studied for liquids characterization. The modeling of the TS-SMR is done by finite element analysis and the results are compared to experimental data for validation. After that, the effect of Y concentrations on the acoustic displacement profiles, the resonance frequency and the admittance of the SMR is investigated. The sensitivity of the TS mode resonator to liquids mass loading, viscosity and conductivity is studied for different Y concentrations and different glycerol-in-water contents. The obtained results show that doping AlN with Y enhances the electromechanical and liquids sensing capabilities of TS-SMR and contributes in the development of high sensitive sensors for liquids characterization.
2022
Istituto di fotonica e nanotecnologie - IFN
AlN doped with transition metals becomes the key for high performance acoustic wave devices due to its improved piezoelectricity after the incorporation of dopants. In this paper, solidly mounted resonator (SMR) based on Yttrium (Y) doped AlN and operates in thickness shear (TS) mode is numerically studied for liquids characterization. The modeling of the TS-SMR is done by finite element analysis and the results are compared to experimental data for validation. After that, the effect of Y concentrations on the acoustic displacement profiles, the resonance frequency and the admittance of the SMR is investigated. The sensitivity of the TS mode resonator to liquids mass loading, viscosity and conductivity is studied for different Y concentrations and different glycerol-in-water contents. The obtained results show that doping AlN with Y enhances the electromechanical and liquids sensing capabilities of TS-SMR and contributes in the development of high sensitive sensors for liquids characterization.
SMR resonatorThickness shear (TS) modeFinite element analysisGravimetric and viscosity measurementsLiquids conductivity measurement
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0924424721007019-main.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.5 MB
Formato Adobe PDF
3.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0924424721007019-main.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.5 MB
Formato Adobe PDF
3.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/512802
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact