A one-dimensional stationary model of biomass gasification in a fixed bed downdraft gasifier is presented in this paper. The model is based on the mass and energy conservation equations and accounts for the energy exchange between the solid and gaseous phases and the heat transfer by radiation between the solid and gaseous species and the reactor walls. The downdraft gasifier is discretized as a sequence of layers where the following typical sub-processes take place: biomass drying (on the top of the reactor), pyrolysis (in the center), oxidation of char and tar cracking (on the bottom of the reactor). Nine species are considered as participating the gaseous reactions: O2, N2, H2O, CO2, H2, CO, CH4, H2S, TAR. The model is solved by dividing the system of differential algebraic equations into two sub-systems: one made of differential equations, solved through algorithms suitable for the solution of stiff problems, one made of non-linear algebraic equations solved through the Newton-Raphson algorithm. The model is suitable of being used as a tool to study the influence of process parameters, such as biomass type, moisture content, gasifier geometry, composition and inlet temperature of the gasifying agent, biomass particle diameter.

A one-dimensional steady model for downdraft biomass gasifiers

Costa M.
Writing – Review & Editing
;
Massarotti N.
Writing – Review & Editing
;
Piazzullo D.
Writing – Original Draft Preparation
;
Rocco V.
Writing – Review & Editing
2016

Abstract

A one-dimensional stationary model of biomass gasification in a fixed bed downdraft gasifier is presented in this paper. The model is based on the mass and energy conservation equations and accounts for the energy exchange between the solid and gaseous phases and the heat transfer by radiation between the solid and gaseous species and the reactor walls. The downdraft gasifier is discretized as a sequence of layers where the following typical sub-processes take place: biomass drying (on the top of the reactor), pyrolysis (in the center), oxidation of char and tar cracking (on the bottom of the reactor). Nine species are considered as participating the gaseous reactions: O2, N2, H2O, CO2, H2, CO, CH4, H2S, TAR. The model is solved by dividing the system of differential algebraic equations into two sub-systems: one made of differential equations, solved through algorithms suitable for the solution of stiff problems, one made of non-linear algebraic equations solved through the Newton-Raphson algorithm. The model is suitable of being used as a tool to study the influence of process parameters, such as biomass type, moisture content, gasifier geometry, composition and inlet temperature of the gasifying agent, biomass particle diameter.
2016
Istituto Motori - IM - Sede Napoli (attivo dal 18/11/1923 al 31/12/2023)
978-88-7431-828-5
Differential-algebraic equations
Gasification
Kinetic model
File in questo prodotto:
File Dimensione Formato  
Extended Abstract Themacomp.pdf

solo utenti autorizzati

Descrizione: Proceedings
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 433.42 kB
Formato Adobe PDF
433.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/512062
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact