On-surface synthesis serves as a powerful approach to construct π-conjugated carbon nanostructures that are not accessible by conventional wet chemistry. Nevertheless, this method has been limited by the types and numbers of available on-surface transformations. While the majority of successful cases exploit thermally triggered dehalogenative carbon–carbon coupling and cyclodehydrogenation, rearrangement of appropriate functional moieties has received limited research attention. Here, the unprecedented interchain coupling and thermally induced skeleton rearrangement are described of (dihydro)indeno[2,1-b]fluorene (IF) polymers on an Au(111) surface under ultrahigh vacuum conditions, leading to different ladder polymers as well as fully fused graphene nanoribbon segments containing pentagonal and heptagonal rings. Au-coordinated nanoribbons are also observed. All structures are unambiguously characterized by high-resolution scanning probe microscopy. The current results provide an avenue to fabricating a wider variety of π-conjugated polymers and carbon nanostructures comprising nonhexagonal rings as well as rarely explored organometallic nanoribbons.

On-Surface Interchain Coupling and Skeletal Rearrangement of Indenofluorene Polymers

Di Giovannantonio M.
;
2023

Abstract

On-surface synthesis serves as a powerful approach to construct π-conjugated carbon nanostructures that are not accessible by conventional wet chemistry. Nevertheless, this method has been limited by the types and numbers of available on-surface transformations. While the majority of successful cases exploit thermally triggered dehalogenative carbon–carbon coupling and cyclodehydrogenation, rearrangement of appropriate functional moieties has received limited research attention. Here, the unprecedented interchain coupling and thermally induced skeleton rearrangement are described of (dihydro)indeno[2,1-b]fluorene (IF) polymers on an Au(111) surface under ultrahigh vacuum conditions, leading to different ladder polymers as well as fully fused graphene nanoribbon segments containing pentagonal and heptagonal rings. Au-coordinated nanoribbons are also observed. All structures are unambiguously characterized by high-resolution scanning probe microscopy. The current results provide an avenue to fabricating a wider variety of π-conjugated polymers and carbon nanostructures comprising nonhexagonal rings as well as rarely explored organometallic nanoribbons.
2023
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Au intercalation
conjugated ladder polymers
lateral fusion
nonbenzenoid
ring-opening
File in questo prodotto:
File Dimensione Formato  
Macro Chemistry Physics - 2023 - Chen - On‐Surface Interchain Coupling and Skeletal Rearrangement of Indenofluorene.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/512191
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact