This paper reports results from an inter-comparison effort involving water vapor and temperature sensors, which took place in the North-Western Mediterranean in the period September–November 2012 in the framework of the first Special Observing Period of the Hydrological cycle in the Mediterranean Experiment. The involved sensors are the ground-based Raman lidars BASIL and WALI, the airborne water vapor differential absorption lidar LEANDRE 2, flying onboard the ATR42 aircraft, as well as additional water vapor and temperature sensors (radiosondes, aircraft in situ sensors, and a microwave radiometer). The main objective of the inter-comparison is the determination of the measurement uncertainty affecting these sensors. The effort benefitted from dedicated ATR42 flights in the framework of the EUropean Facility for Airborne Research (EUFAR) Project “WaLiTemp.”
Water vapor mixing ratio and temperature inter-comparison results in the framework of the Hydrological Cycle in the Mediterranean Experiment—Special Observation Period 1
Benedetto De Rosa;Donato Summa;
2020
Abstract
This paper reports results from an inter-comparison effort involving water vapor and temperature sensors, which took place in the North-Western Mediterranean in the period September–November 2012 in the framework of the first Special Observing Period of the Hydrological cycle in the Mediterranean Experiment. The involved sensors are the ground-based Raman lidars BASIL and WALI, the airborne water vapor differential absorption lidar LEANDRE 2, flying onboard the ATR42 aircraft, as well as additional water vapor and temperature sensors (radiosondes, aircraft in situ sensors, and a microwave radiometer). The main objective of the inter-comparison is the determination of the measurement uncertainty affecting these sensors. The effort benefitted from dedicated ATR42 flights in the framework of the EUropean Facility for Airborne Research (EUFAR) Project “WaLiTemp.”I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.