: Sodium hydroxide (NaOH) is increasingly drawing attention as a highly selective etchant for femtosecond laser-modified fused silica. Unprecedented etching contrasts between the irradiated and pristine areas have enabled the fabrication of hollow, high-aspect-ratio structures in the bulk of the material, overcoming the micrometer threshold as the minimum feature size. In this work, we systematically study the effect of NaOH solutions under different etching conditions (etchant concentration, temperature, and etching time) on the tracks created by tightly focused femtosecond laser pulses to assess the best practices for the fabrication of hollow nanostructures in bulk fused silica.
Nanochannels in Fused Silica through NaOH Etching Assisted by Femtosecond Laser Irradiation
Barbato, Pasquale
;Osellame, Roberto;Martínez Vázquez, Rebeca
2024
Abstract
: Sodium hydroxide (NaOH) is increasingly drawing attention as a highly selective etchant for femtosecond laser-modified fused silica. Unprecedented etching contrasts between the irradiated and pristine areas have enabled the fabrication of hollow, high-aspect-ratio structures in the bulk of the material, overcoming the micrometer threshold as the minimum feature size. In this work, we systematically study the effect of NaOH solutions under different etching conditions (etchant concentration, temperature, and etching time) on the tracks created by tightly focused femtosecond laser pulses to assess the best practices for the fabrication of hollow nanostructures in bulk fused silica.File | Dimensione | Formato | |
---|---|---|---|
(2024) Barbato et al_Materials.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.94 MB
Formato
Adobe PDF
|
1.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.