Soil erosion is one of the major natural risk factors for developing high-value crops and an accurate estimation of spatial distribution and rates of soil degradation can be crucial to prevent crop degradation. In this paper, we use comparisons between high-resolution DEMs and soil erosion models to uncover the short-term landscape evolution of hazelnut crop yields, which are affected by incipient processes of rill development. Maps of rill initiation and evolution were extracted from the analysis of UAV-based multitemporal DEMs and the application of soil erosion models. A comparison between such a short-term analysis and historical orthophotos was carried out. Such a comparison shows how the USPED model predicts, very reliably, where linear erosion occurred. In fact, a reliable overlay between the linear erosive forms predicted by the USPED model and those captured by the UAV images can be observed. Furthermore, land use changes from 1974 to 2020 are characterized by a transition from abandoned areas (1974) to areas with high-value cultivation (2020), which has a strong impact on the spatial distribution of erosion processes and landslide occurrence. Such data represent a key tool for both the investigation of the spatial distribution of hot-spots of soil degradation and the identification of effective mitigation practices of soil conservation.
Impact of Land Use Changes on the Erosion Processes of a Degraded Rural Landscape: An Analysis Based on High-Resolution DEMs, Historical Images, and Soil Erosion Models
Gioia D.;Minervino Amodio A.;Maggio A.;Sabia C. A.
2021
Abstract
Soil erosion is one of the major natural risk factors for developing high-value crops and an accurate estimation of spatial distribution and rates of soil degradation can be crucial to prevent crop degradation. In this paper, we use comparisons between high-resolution DEMs and soil erosion models to uncover the short-term landscape evolution of hazelnut crop yields, which are affected by incipient processes of rill development. Maps of rill initiation and evolution were extracted from the analysis of UAV-based multitemporal DEMs and the application of soil erosion models. A comparison between such a short-term analysis and historical orthophotos was carried out. Such a comparison shows how the USPED model predicts, very reliably, where linear erosion occurred. In fact, a reliable overlay between the linear erosive forms predicted by the USPED model and those captured by the UAV images can be observed. Furthermore, land use changes from 1974 to 2020 are characterized by a transition from abandoned areas (1974) to areas with high-value cultivation (2020), which has a strong impact on the spatial distribution of erosion processes and landslide occurrence. Such data represent a key tool for both the investigation of the spatial distribution of hot-spots of soil degradation and the identification of effective mitigation practices of soil conservation.File | Dimensione | Formato | |
---|---|---|---|
2021 Sabia et al. Land-10-00673-v2.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
9.92 MB
Formato
Adobe PDF
|
9.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.