Many signalling proteins involved in diverse functions such as cell growth and differentiation can act as oncogenes and cause cellular transformation. These molecules represent attractive targets for cancer diagnosis or therapy and therefore are subject to intensive investigation. Aptamers are small, highly structured nucleic acid molecules, isolated from combinatorial libraries by a procedure termed SELEX. Aptamers bind to a target molecule by providing a limited number of specific contact points imbedded in a larger, defined three-dimensional structure. Recently, aptamers have been selected against whole living cells, opening a new path which presents three major advantages: (1) direct selection without prior purification of membrane-bound targets, (2) access to membrane proteins in their native conformation similar to the in vivo conditions and (3) identification of (new) targets related to a specific phenotype. The ability to raise aptamers against living cells opens some attractive possibilities for new therapeutic and delivery approaches. In this chapter, the most recent advances in the field will be reviewed together with detailed descriptions of the relevant experimental approaches.

Cell-specific aptamers for targeted therapies.

Cerchia L;de Franciscis V
2009

Abstract

Many signalling proteins involved in diverse functions such as cell growth and differentiation can act as oncogenes and cause cellular transformation. These molecules represent attractive targets for cancer diagnosis or therapy and therefore are subject to intensive investigation. Aptamers are small, highly structured nucleic acid molecules, isolated from combinatorial libraries by a procedure termed SELEX. Aptamers bind to a target molecule by providing a limited number of specific contact points imbedded in a larger, defined three-dimensional structure. Recently, aptamers have been selected against whole living cells, opening a new path which presents three major advantages: (1) direct selection without prior purification of membrane-bound targets, (2) access to membrane proteins in their native conformation similar to the in vivo conditions and (3) identification of (new) targets related to a specific phenotype. The ability to raise aptamers against living cells opens some attractive possibilities for new therapeutic and delivery approaches. In this chapter, the most recent advances in the field will be reviewed together with detailed descriptions of the relevant experimental approaches.
2009
Istituto di Endocrinologia e Oncologia Sperimentale ''G. Salvatore'' - IEOS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/51238
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? ND
social impact