Background: 18F-fluorodeoxyglucose (18F-FDG) positron-emission-tomography (PET) allows detection of cerebral metabolic alterations in neurological diseases vs. normal aging. We assess age- and sex-related brain metabolic changes in healthy subjects, exploring impact of activity normalization methods. Methods: brain scans of Italian Association of Nuclear Medicine normative database (151 subjects, 67 Males, 84 Females, aged 20-84) were selected. Global mean, white matter, and pons activity were explored as normalization reference. We performed voxel-based and ROI analyses using SPM12 and IBM-SPSS software. Results: SPM proved a negative correlation between age and brain glucose metabolism involving frontal lobes, anterior-cingulate and insular cortices bilaterally. Narrower clusters were detected in lateral parietal lobes, precuneus, temporal pole and medial areas bilaterally. Normalizing on pons activity, we found a more significant negative correlation and no positive one. ROIs analysis confirmed SPM results. Moreover, a significant age × sex interaction effect was revealed, with worse metabolic reduction in posterior-cingulate cortices in females than males, especially in post-menopausal age. Conclusions: this study demonstrated an age-related metabolic reduction in frontal lobes and in some parieto-temporal areas more evident in females. Results suggested pons as the most appropriate normalization reference. Knowledge of age- and sex-related cerebral metabolic changes is critical to correctly interpreting brain 18F-FDG PET imaging.
Evaluation of Age and Sex-Related Metabolic Changes in Healthy Subjects: An Italian Brain 18F-FDG PET Study
Pappata', Sabina;
2021
Abstract
Background: 18F-fluorodeoxyglucose (18F-FDG) positron-emission-tomography (PET) allows detection of cerebral metabolic alterations in neurological diseases vs. normal aging. We assess age- and sex-related brain metabolic changes in healthy subjects, exploring impact of activity normalization methods. Methods: brain scans of Italian Association of Nuclear Medicine normative database (151 subjects, 67 Males, 84 Females, aged 20-84) were selected. Global mean, white matter, and pons activity were explored as normalization reference. We performed voxel-based and ROI analyses using SPM12 and IBM-SPSS software. Results: SPM proved a negative correlation between age and brain glucose metabolism involving frontal lobes, anterior-cingulate and insular cortices bilaterally. Narrower clusters were detected in lateral parietal lobes, precuneus, temporal pole and medial areas bilaterally. Normalizing on pons activity, we found a more significant negative correlation and no positive one. ROIs analysis confirmed SPM results. Moreover, a significant age × sex interaction effect was revealed, with worse metabolic reduction in posterior-cingulate cortices in females than males, especially in post-menopausal age. Conclusions: this study demonstrated an age-related metabolic reduction in frontal lobes and in some parieto-temporal areas more evident in females. Results suggested pons as the most appropriate normalization reference. Knowledge of age- and sex-related cerebral metabolic changes is critical to correctly interpreting brain 18F-FDG PET imaging.File | Dimensione | Formato | |
---|---|---|---|
pappata_jcninmed_2021.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
6.38 MB
Formato
Adobe PDF
|
6.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.