We study a generic cavity-QED system where a set of (artificial) two-level dipoles is coupled to the electric field of a single-mode LC resonator. This setup is used to derive a minimal quantum mechanical model for cavity QED, which accounts for both dipole-field and direct dipole-dipole interactions. The model is applicable for arbitrary coupling strengths and allows us to extend the usual Dicke model into the nonperturbative regime of QED, where the dipole-field interaction can be associated with an effective fine-structure constant of order unity. In this regime, we identify three distinct classes of normal, superradiant, and subradiant vacuum states and discuss their characteristic properties and the transitions between them. Our findings reconcile many of the previous, often contradictory predictions in this field and establish a common theoretical framework to describe ultrastrong-coupling phenomena in a diverse range of cavity-QED platforms.

Cavity quantum electrodynamics in the nonperturbative regime

De Bernardis D.
Primo
Writing – Original Draft Preparation
;
2018

Abstract

We study a generic cavity-QED system where a set of (artificial) two-level dipoles is coupled to the electric field of a single-mode LC resonator. This setup is used to derive a minimal quantum mechanical model for cavity QED, which accounts for both dipole-field and direct dipole-dipole interactions. The model is applicable for arbitrary coupling strengths and allows us to extend the usual Dicke model into the nonperturbative regime of QED, where the dipole-field interaction can be associated with an effective fine-structure constant of order unity. In this regime, we identify three distinct classes of normal, superradiant, and subradiant vacuum states and discuss their characteristic properties and the transitions between them. Our findings reconcile many of the previous, often contradictory predictions in this field and establish a common theoretical framework to describe ultrastrong-coupling phenomena in a diverse range of cavity-QED platforms.
2018
Istituto Nazionale di Ottica - INO - Sede Secondaria di Sesto Fiorentino
cavity QED
non-perturbative quantum electrodynamics
dipoles
circuit QED
polaritons
File in questo prodotto:
File Dimensione Formato  
1712.00015v2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 3.9 MB
Formato Adobe PDF
3.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/512493
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 113
  • ???jsp.display-item.citation.isi??? ND
social impact