Negative capacitance (NC) emerges as a promising technology for low-power, high-performance transistors. The HiEnD project intends to analyze and design high-energy efficient electronic devices based on innovative ferroelectric materials. It explores NC technology for high-resolution tracking detectors in future high-energy physics experiments. It aims to create ultra-thin, radiation-resistant devices for superior signal detection in harsh environments. This paper presents detailed modeling, simulation results, and a comparison with experimental data, highlighting the potential of the developed methodology but also of the technology for the realization of compact, high-performance detectors. Advanced Technology CAD modeling has been employed to investigate the potentiality of NC devices in unconventional application domains, such as high-energy physics experiments. Numerical simulations, capable of verifying experimental results, enhance predictive power, reducing time and cost in detector design and testing.

TCAD approach for negative capacitance ferroelectric devices for radiation detection applications

Moscatelli F.;
2024

Abstract

Negative capacitance (NC) emerges as a promising technology for low-power, high-performance transistors. The HiEnD project intends to analyze and design high-energy efficient electronic devices based on innovative ferroelectric materials. It explores NC technology for high-resolution tracking detectors in future high-energy physics experiments. It aims to create ultra-thin, radiation-resistant devices for superior signal detection in harsh environments. This paper presents detailed modeling, simulation results, and a comparison with experimental data, highlighting the potential of the developed methodology but also of the technology for the realization of compact, high-performance detectors. Advanced Technology CAD modeling has been employed to investigate the potentiality of NC devices in unconventional application domains, such as high-energy physics experiments. Numerical simulations, capable of verifying experimental results, enhance predictive power, reducing time and cost in detector design and testing.
2024
Istituto Officina dei Materiali - IOM -
Ferroelectric devices
Numerical models
Radiation damage effects
TCAD simulations
File in questo prodotto:
File Dimensione Formato  
2024_Morozzi_negative_capacitance_NIMA.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 768.25 kB
Formato Adobe PDF
768.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/512498
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact