Based on a multi-scale and hydrostructural approach, this study presents the most relevant methodology to be applied to a karst hydrosystem in order to get a full understanding of underground water flow. It implies a complete structural analysis, from the hydrosystem scale to the outcrop scale, including the intermediate scale of the major geological structures. We illustrate the method in the Arcier hydrosystem, in the northwestern border of the Jura fold-and-thrust belt (Eastern France). Field mapping and structural analysis allow to update the geological vision of the hydrosystem with two kink-type fault propagation folds, including a trishear kinematic model, on either side of a plateau presenting a hollow-and-dome configuration. Fracturing analysis reveals a fault-fracture network that we infer governs the entire hydrosystem. A Riedel pattern is highlighted, characterized by a N–S-striking (N355° ± 5), sinistral strike-slip, regional shear zone. Then, two 3D geological models, at different scales, constructed with MOVE and Visual Karsys softwares are combined with water levels and artificial tracer tests. It reveals a multilayer aquifer and a redefinition of groundwater circulations for the Arcier hydrosystem. The results demonstrate a strong geological control of karstic hydrosystems on groundwater circulations, proving that classical hydrogeological methods, such as natural and/or artificial tracers, must be combined with rigorous geological analysis. Moreover, the multi-scale approach provides an explanation of groundwater circulation based on the intersection between 3D geometry of impervious layers delimiting the aquifers and their base water level, instead of the 2D view (section or map) requiring systematic recourse to inferred vertical faults to cross permeability barriers vertically or laterally. This study also brings a new vision to the local protection of the water resource.

Multi-scale hydrostructural approach for karst environment. Application to the Arcier hydrosystem (eastern France)

Smeraglia L.;
2024

Abstract

Based on a multi-scale and hydrostructural approach, this study presents the most relevant methodology to be applied to a karst hydrosystem in order to get a full understanding of underground water flow. It implies a complete structural analysis, from the hydrosystem scale to the outcrop scale, including the intermediate scale of the major geological structures. We illustrate the method in the Arcier hydrosystem, in the northwestern border of the Jura fold-and-thrust belt (Eastern France). Field mapping and structural analysis allow to update the geological vision of the hydrosystem with two kink-type fault propagation folds, including a trishear kinematic model, on either side of a plateau presenting a hollow-and-dome configuration. Fracturing analysis reveals a fault-fracture network that we infer governs the entire hydrosystem. A Riedel pattern is highlighted, characterized by a N–S-striking (N355° ± 5), sinistral strike-slip, regional shear zone. Then, two 3D geological models, at different scales, constructed with MOVE and Visual Karsys softwares are combined with water levels and artificial tracer tests. It reveals a multilayer aquifer and a redefinition of groundwater circulations for the Arcier hydrosystem. The results demonstrate a strong geological control of karstic hydrosystems on groundwater circulations, proving that classical hydrogeological methods, such as natural and/or artificial tracers, must be combined with rigorous geological analysis. Moreover, the multi-scale approach provides an explanation of groundwater circulation based on the intersection between 3D geometry of impervious layers delimiting the aquifers and their base water level, instead of the 2D view (section or map) requiring systematic recourse to inferred vertical faults to cross permeability barriers vertically or laterally. This study also brings a new vision to the local protection of the water resource.
2024
Istituto di Geologia Ambientale e Geoingegneria - IGAG
3D model, Groundwater, Jura mountains, Karst, Structural geology
File in questo prodotto:
File Dimensione Formato  
Klaba et al., 2024_compressed.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/512590
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact